⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠁⠎⠀⠎⠽⠾⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠀⠀⠀⠀⠀⠊⠝⠀⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠀⠀⠀⠀⠀⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠝⠁⠹⠀⠙⠑⠝⠀⠃⠑⠱⠇⠳⠎⠎⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠍⠀⠼⠉⠚⠄⠁⠁⠄⠃⠚⠁⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠀⠃⠁⠎⠑⠇ ⠀⠀⠀⠀⠀⠀⠝⠊⠹⠞⠀⠡⠎⠙⠗⠥⠉⠅⠃⠁⠗⠑⠀⠧⠑⠗⠎⠊⠕⠝⠀ ⠀⠋⠳⠗⠀⠙⠁⠎⠀⠇⠑⠎⠑⠝⠀⠁⠝⠀⠩⠝⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠇⠑ ⠀⠀⠓⠑⠗⠡⠎⠛⠑⠛⠑⠃⠑⠝⠀⠧⠕⠍ ⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠕⠍⠊⠞⠑⠑⠀⠙⠑⠗ ⠀⠀⠙⠣⠞⠱⠎⠏⠗⠁⠹⠊⠛⠑⠝⠀⠇⠜⠝⠙⠑⠗⠀⠘⠃⠎⠅⠙⠇ ⠀⠀⠥⠝⠞⠑⠗⠅⠕⠍⠍⠊⠎⠎⠊⠕⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠙⠁⠎⠀⠎⠽⠾⠑⠍⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠊⠝⠀⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠙⠬⠎⠑⠀⠎⠽⠾⠑⠍⠁⠞⠊⠅⠀⠑⠗⠱⠩⠝⠞⠀⠊⠝⠀⠱⠺⠁⠗⠵⠤⠀⠥⠝⠙ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠄⠀⠊⠓⠗⠑⠀⠥⠝⠧⠑⠗⠜⠝⠙⠑⠗⠞⠑⠂ ⠧⠕⠇⠇⠾⠜⠝⠙⠊⠛⠑⠀⠧⠑⠗⠧⠬⠇⠋⠜⠇⠞⠊⠛⠥⠝⠛⠀⠵⠥ ⠏⠗⠊⠧⠁⠞⠑⠝⠂⠀⠝⠊⠹⠞⠤⠅⠕⠍⠍⠑⠗⠵⠊⠑⠇⠇⠑⠝⠀⠵⠺⠑⠉⠅⠑⠝ ⠊⠾⠀⠑⠗⠺⠳⠝⠱⠞⠄⠀⠙⠁⠎⠀⠞⠊⠞⠑⠇⠃⠇⠁⠞⠞⠀⠊⠾ ⠃⠑⠾⠁⠝⠙⠞⠩⠇⠀⠙⠑⠎⠀⠉⠕⠏⠽⠗⠊⠛⠓⠞⠎⠄ ⠗⠑⠙⠁⠅⠞⠊⠕⠝⠒ ⠀⠀⠏⠑⠞⠗⠁⠀⠁⠇⠙⠗⠊⠙⠛⠑⠂⠀⠵⠳⠗⠊⠹ ⠀⠀⠧⠊⠧⠊⠁⠝⠀⠁⠇⠙⠗⠊⠙⠛⠑⠂⠀⠃⠁⠎⠑⠇ ⠀⠀⠛⠳⠝⠞⠓⠑⠗⠀⠅⠁⠏⠏⠑⠇⠂⠀⠍⠁⠗⠃⠥⠗⠛ ⠀⠀⠽⠧⠕⠝⠝⠑⠀⠎⠁⠍⠇⠁⠝⠙⠂⠀⠇⠩⠏⠵⠊⠛ ⠎⠁⠞⠵⠒⠀⠃⠗⠁⠊⠇⠇⠑⠤⠀⠥⠝⠙⠀⠱⠺⠁⠗⠵⠙⠗⠥⠉⠅⠒ ⠀⠀⠧⠊⠧⠊⠁⠝⠀⠁⠇⠙⠗⠊⠙⠛⠑ ⠼⠂⠀⠡⠋⠇⠁⠛⠑⠀⠼⠃⠚⠁⠑ ⠶⠘⠉⠶⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠕⠍⠊⠞⠑⠑⠀⠙⠑⠗ ⠀⠀⠙⠣⠞⠱⠎⠏⠗⠁⠹⠊⠛⠑⠝⠀⠇⠜⠝⠙⠑⠗⠀⠘⠃⠎⠅⠙⠇ ⠘⠊⠎⠃⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠤⠡⠎⠛⠁⠃⠑⠀⠙⠑⠗ ⠀⠀⠘⠎⠃⠎⠒⠀⠼⠊⠛⠓⠄⠉⠄⠚⠉⠉⠄⠚⠙⠊⠋⠙⠄⠃ ⠠⠨⠺⠺⠺⠄⠃⠎⠅⠙⠇⠄⠕⠗⠛ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠁⠎⠀⠎⠽⠾⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠀⠀⠀⠀⠀⠊⠝⠀⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠀⠀⠀⠀⠀⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠀⠙⠗⠩⠀⠃⠗⠁⠊⠇⠇⠑⠃⠜⠝⠙⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠗⠾⠑⠗⠀⠃⠁⠝⠙ ⠙⠁⠝⠅ ⠒⠒⠒⠒ ⠙⠬⠎⠑⠎⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠀⠺⠥⠗⠙⠑⠀⠙⠁⠝⠅⠀⠛⠗⠕⠮⠤ ⠵⠳⠛⠊⠛⠑⠗⠀⠋⠊⠝⠁⠝⠵⠊⠑⠇⠇⠑⠗⠀⠵⠥⠺⠑⠝⠙⠥⠝⠛⠑⠝ ⠋⠕⠇⠛⠑⠝⠙⠑⠗⠀⠾⠊⠋⠞⠥⠝⠛⠑⠝⠀⠑⠗⠍⠪⠛⠇⠊⠹⠞⠒ ⠛⠑⠕⠗⠛⠀⠥⠝⠙⠀⠍⠕⠝⠊⠟⠥⠑⠀⠙⠊⠑⠍⠤⠱⠳⠇⠊⠝⠤⠾⠊⠋⠞⠥⠝⠛ ⠓⠁⠝⠎⠤⠑⠛⠛⠑⠝⠃⠑⠗⠛⠑⠗⠤⠾⠊⠋⠞⠥⠝⠛ ⠓⠊⠗⠱⠍⠁⠝⠝⠤⠾⠊⠋⠞⠥⠝⠛ ⠋⠗⠬⠙⠗⠊⠹⠀⠥⠝⠙⠀⠁⠍⠁⠇⠊⠑⠀⠍⠑⠽⠑⠗⠤⠃⠡⠍⠁⠝⠝⠤ ⠀⠀⠾⠊⠋⠞⠥⠝⠛ ⠍⠊⠛⠗⠕⠎⠤⠅⠥⠇⠞⠥⠗⠏⠗⠕⠵⠑⠝⠞ ⠙⠗⠄⠀⠚⠑⠁⠝⠀⠾⠬⠛⠑⠗⠤⠾⠊⠋⠞⠥⠝⠛ ⠋⠳⠗⠀⠊⠓⠗⠑⠀⠋⠁⠹⠇⠊⠹⠑⠀⠥⠝⠞⠑⠗⠾⠳⠞⠵⠥⠝⠛ ⠙⠁⠝⠅⠑⠝⠀⠺⠊⠗⠒ ⠃⠗⠊⠛⠊⠞⠞⠑⠀⠃⠑⠞⠵⠂⠀⠍⠁⠗⠃⠥⠗⠛ ⠗⠩⠝⠑⠗⠀⠓⠑⠗⠗⠍⠁⠝⠝⠂⠀⠓⠁⠝⠝⠕⠧⠑⠗ ⠍⠊⠞⠛⠇⠬⠙⠑⠗⠀⠙⠑⠗⠀⠥⠝⠞⠑⠗⠅⠕⠍⠍⠊⠎⠎⠊⠕⠝ ⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠙⠑⠎⠀⠘⠃⠎⠅⠙⠇ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠏⠑⠞⠗⠁⠀⠁⠇⠙⠗⠊⠙⠛⠑⠂⠀⠵⠳⠗⠊⠹ ⠀⠀⠘⠎⠃⠎⠀⠱⠺⠩⠵⠑⠗⠊⠱⠑⠀⠃⠊⠃⠇⠊⠕⠞⠓⠑⠅⠀⠋⠳⠗ ⠀⠀⠃⠇⠊⠝⠙⠑⠂⠀⠎⠑⠓⠤⠀⠥⠝⠙⠀⠇⠑⠎⠑⠃⠑⠓⠊⠝⠙⠑⠗⠞⠑ ⠧⠊⠧⠊⠁⠝⠀⠁⠇⠙⠗⠊⠙⠛⠑⠂⠀⠃⠁⠎⠑⠇ ⠀⠀⠎⠑⠓⠃⠑⠓⠊⠝⠙⠑⠗⠞⠑⠝⠓⠊⠇⠋⠑⠀⠃⠁⠎⠑⠇⠠⠤⠀⠘⠎⠃⠓ ⠀⠀⠧⠑⠗⠃⠁⠝⠙⠀⠙⠑⠗⠀⠃⠇⠊⠝⠙⠑⠝⠤⠀⠥⠝⠙⠀⠎⠑⠓⠤ ⠀⠀⠀⠀⠃⠑⠓⠊⠝⠙⠑⠗⠞⠑⠝⠏⠜⠙⠁⠛⠕⠛⠊⠅⠠⠤⠀⠘⠧⠃⠎ ⠍⠁⠗⠇⠬⠎⠀⠃⠕⠹⠎⠇⠑⠗⠂⠀⠵⠳⠗⠊⠹ ⠀⠀⠘⠎⠃⠎⠀⠱⠺⠩⠵⠑⠗⠊⠱⠑⠀⠃⠊⠃⠇⠊⠕⠞⠓⠑⠅⠀⠋⠳⠗ ⠀⠀⠃⠇⠊⠝⠙⠑⠂⠀⠎⠑⠓⠤⠀⠥⠝⠙⠀⠇⠑⠎⠑⠃⠑⠓⠊⠝⠙⠑⠗⠞⠑ ⠗⠊⠹⠁⠗⠙⠀⠓⠣⠑⠗⠀⠛⠑⠝⠄⠀⠓⠁⠇⠇⠍⠁⠝⠝⠂⠀⠓⠁⠛⠑⠝ ⠀⠀⠁⠗⠃⠩⠞⠎⠃⠑⠗⠩⠹⠀⠡⠙⠊⠕⠞⠁⠅⠞⠊⠇⠑⠀⠍⠑⠙⠊⠑⠝⠀⠙⠑⠗ ⠀⠀⠀⠀⠨⠋⠑⠗⠝⠨⠥⠝⠊⠧⠑⠗⠎⠊⠞⠜⠞⠀⠊⠝⠀⠓⠁⠛⠑⠝ ⠀⠀⠧⠕⠗⠎⠊⠞⠵⠑⠝⠙⠑⠗⠀⠙⠑⠎⠀⠘⠃⠎⠅⠙⠇ ⠛⠳⠝⠞⠓⠑⠗⠀⠅⠁⠏⠏⠑⠇⠂⠀⠍⠁⠗⠃⠥⠗⠛ ⠀⠀⠙⠣⠞⠱⠑⠀⠃⠇⠊⠝⠙⠑⠝⠾⠥⠙⠊⠑⠝⠁⠝⠾⠁⠇⠞⠀⠑⠄⠧⠄⠂ ⠀⠀⠍⠁⠗⠃⠥⠗⠛⠠⠤⠀⠠⠃⠇⠊⠎⠞⠁ ⠛⠳⠝⠞⠓⠑⠗⠀⠅⠕⠕⠎⠂⠀⠍⠁⠗⠃⠥⠗⠛ ⠀⠀⠉⠁⠗⠇⠤⠾⠗⠑⠓⠇⠤⠱⠥⠇⠑⠀⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝ ⠀⠀⠃⠇⠊⠝⠙⠑⠝⠾⠥⠙⠊⠑⠝⠁⠝⠾⠁⠇⠞⠀⠑⠄⠧⠄⠂ ⠀⠀⠍⠁⠗⠃⠥⠗⠛⠠⠤⠀⠠⠃⠇⠊⠎⠞⠁ ⠑⠗⠝⠾⠤⠙⠬⠞⠗⠊⠹⠀⠇⠕⠗⠑⠝⠵⠂⠀⠓⠁⠝⠝⠕⠧⠑⠗ ⠀⠀⠙⠣⠞⠱⠑⠗⠀⠧⠑⠗⠩⠝⠀⠙⠑⠗⠀⠃⠇⠊⠝⠙⠑⠝⠀⠥⠝⠙⠀⠎⠑⠓⠤ ⠀⠀⠃⠑⠓⠊⠝⠙⠑⠗⠞⠑⠝⠀⠊⠝⠀⠾⠥⠙⠊⠥⠍⠀⠥⠝⠙⠀⠃⠑⠗⠥⠋ ⠀⠀⠑⠄⠧⠄⠠⠤⠀⠘⠙⠧⠃⠎ ⠞⠊⠝⠁⠀⠇⠕⠗⠊⠛⠂⠀⠙⠳⠗⠑⠝ ⠀⠀⠘⠇⠧⠗⠤⠇⠕⠥⠊⠎⠤⠃⠗⠁⠊⠇⠇⠑⠤⠱⠥⠇⠑⠀⠙⠳⠗⠑⠝⠂ ⠀⠀⠍⠑⠙⠊⠑⠝⠵⠑⠝⠞⠗⠥⠍ ⠽⠧⠕⠝⠝⠑⠀⠎⠁⠍⠇⠁⠝⠙⠂⠀⠇⠩⠏⠵⠊⠛ ⠀⠀⠙⠣⠞⠱⠑⠀⠵⠑⠝⠞⠗⠁⠇⠃⠳⠹⠑⠗⠩⠀⠋⠳⠗⠀⠃⠇⠊⠝⠙⠑⠀⠵⠥ ⠀⠀⠇⠩⠏⠵⠊⠛⠀⠶⠘⠙⠵⠃⠶ ⠑⠗⠊⠹⠀⠱⠍⠊⠙⠂⠀⠺⠬⠝ ⠀⠀⠃⠥⠝⠙⠑⠎⠤⠃⠇⠊⠝⠙⠑⠝⠑⠗⠵⠬⠓⠥⠝⠛⠎⠊⠝⠾⠊⠞⠥⠞⠠⠤ ⠀⠀⠀⠀⠘⠃⠃⠊ ⠀⠀⠃⠇⠊⠝⠙⠑⠝⠤⠀⠥⠝⠙⠀⠎⠑⠓⠃⠑⠓⠊⠝⠙⠑⠗⠞⠑⠝⠧⠑⠗⠃⠁⠝⠙ ⠀⠀⠀⠀⠪⠾⠑⠗⠗⠩⠹ ⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠑⠗⠾⠑⠗⠀⠃⠁⠝⠙ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠧⠕⠗⠺⠕⠗⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁ ⠀⠀⠑⠝⠞⠺⠊⠉⠅⠇⠥⠝⠛⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃ ⠀⠀⠅⠕⠍⠏⠁⠅⠞⠓⠩⠞⠀⠧⠑⠗⠎⠥⠎⠀⠅⠕⠝⠞⠑⠭⠞⠥⠝⠤ ⠀⠀⠀⠀⠀⠀⠁⠃⠓⠜⠝⠛⠊⠛⠅⠩⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉ ⠀⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙ ⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠀⠙⠬⠎⠑⠎⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠎⠀⠄⠄⠄⠀⠼⠊ ⠀⠀⠡⠋⠃⠡⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠊ ⠀⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠁ ⠼⠁⠀⠛⠗⠥⠝⠙⠇⠑⠛⠑⠝⠙⠑⠀⠞⠑⠹⠝⠊⠅⠑⠝⠀⠵⠥⠗ ⠀⠀⠀⠀⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠧⠕⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠀⠀⠼⠁⠑ ⠀⠀⠼⠁⠄⠁⠀⠺⠑⠹⠎⠑⠇⠀⠵⠺⠊⠱⠑⠝⠀⠞⠑⠭⠞⠤⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠑ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠁⠀⠇⠁⠽⠕⠥⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠋ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠃⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠉⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠞⠑⠭⠞⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠙ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠙⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠝⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠑⠀⠓⠊⠝⠺⠩⠎⠑⠀⠵⠥⠍⠀⠩⠝⠎⠁⠞⠵ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠑⠗⠀⠱⠗⠊⠋⠞⠺⠑⠹⠎⠑⠇⠞⠑⠹⠝⠊⠅⠑⠝⠀⠼⠃⠊ ⠀⠀⠼⠁⠄⠃⠀⠞⠗⠑⠝⠝⠑⠝⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠤ ⠀⠀⠀⠀⠀⠀⠞⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠡⠎⠙⠗⠳⠉⠅⠑⠀⠼⠉⠃ ⠀⠀⠼⠁⠄⠉⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠙ ⠼⠃⠀⠵⠊⠋⠋⠑⠗⠝⠀⠥⠝⠙⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠛ ⠀⠀⠼⠃⠄⠁⠀⠁⠗⠁⠃⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠝⠀⠥⠝⠙⠀⠵⠁⠓⠤ ⠀⠀⠀⠀⠀⠀⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠛ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠁⠀⠵⠁⠓⠇⠑⠝⠀⠊⠝⠀⠾⠁⠝⠙⠁⠗⠙⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠓ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠃⠀⠵⠁⠓⠇⠑⠝⠀⠊⠝⠀⠛⠑⠎⠑⠝⠅⠞⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠁ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠉⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠙ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠙⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠀⠙⠑⠵⠊⠍⠁⠇⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠋ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠑⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠇⠁⠝⠛⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠛ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠋⠀⠕⠗⠙⠝⠥⠝⠛⠎⠵⠁⠓⠇⠑⠝⠂⠀⠙⠑⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠊⠍⠁⠇⠅⠇⠁⠎⠎⠊⠋⠊⠅⠁⠞⠕⠗⠑⠝⠂ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠁⠞⠑⠝⠀⠥⠝⠙⠀⠥⠓⠗⠵⠩⠞⠑⠝⠀⠄⠄⠄⠄⠀⠼⠙⠊ ⠀⠀⠼⠃⠄⠃⠀⠗⠪⠍⠊⠱⠑⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠑⠃ ⠼⠉⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠥⠝⠙⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠄⠄⠄⠄⠄⠀⠼⠑⠑ ⠀⠀⠼⠉⠄⠁⠀⠧⠕⠗⠃⠑⠍⠑⠗⠅⠥⠝⠛⠀⠵⠥⠗⠀⠅⠑⠝⠝⠤ ⠀⠀⠀⠀⠀⠀⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠀⠼⠑⠑ ⠀⠀⠼⠉⠄⠃⠀⠛⠗⠕⠮⠤⠀⠥⠝⠙⠀⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛ ⠀⠀⠀⠀⠀⠀⠇⠁⠞⠩⠝⠊⠱⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠀⠼⠑⠋ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊⠊ ⠀⠀⠼⠉⠄⠉⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠑⠊ ⠀⠀⠼⠉⠄⠙⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑ ⠀⠀⠀⠀⠀⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠋⠑ ⠀⠀⠼⠉⠄⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠜⠓⠝⠇⠊⠹⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠀⠼⠛⠚ ⠀⠀⠼⠉⠄⠋⠀⠅⠥⠗⠵⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠛⠙ ⠀⠀⠼⠉⠄⠛⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠛⠛ ⠀⠀⠼⠉⠄⠓⠀⠞⠑⠭⠞⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠛⠓ ⠼⠙⠀⠩⠝⠓⠩⠞⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠁ ⠀⠀⠼⠙⠄⠁⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝⠀⠩⠝⠓⠩⠞⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠎⠽⠍⠃⠕⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠁ ⠀⠀⠼⠙⠄⠃⠀⠏⠗⠕⠵⠑⠝⠞⠂⠀⠏⠗⠕⠍⠊⠇⠇⠑⠀⠄⠄⠄⠄⠄⠄⠀⠼⠓⠉ ⠀⠀⠼⠙⠄⠉⠀⠺⠊⠝⠅⠑⠇⠤⠀⠥⠝⠙⠀⠞⠑⠍⠏⠑⠗⠁⠞⠥⠗⠤ ⠀⠀⠀⠀⠀⠀⠍⠁⠮⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠉ ⠀⠀⠼⠙⠄⠙⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠀⠡⠎⠀⠃⠥⠹⠾⠁⠤ ⠀⠀⠀⠀⠀⠀⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠙ ⠀⠀⠼⠙⠄⠑⠀⠧⠑⠗⠛⠗⠪⠮⠑⠗⠥⠝⠛⠎⠤⠀⠥⠝⠙⠀⠧⠑⠗⠤ ⠀⠀⠀⠀⠀⠀⠅⠇⠩⠝⠑⠗⠥⠝⠛⠎⠏⠗⠜⠋⠊⠭⠑⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠛ ⠀⠀⠼⠙⠄⠋⠀⠺⠜⠓⠗⠥⠝⠛⠎⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠊⠚ ⠼⠑⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠤ ⠀⠀⠀⠀⠹⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠊⠉ ⠵⠺⠩⠞⠑⠗⠀⠃⠁⠝⠙ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠼⠋⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠥⠝⠙⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠾⠗⠊⠹⠑⠀⠼⠁⠚⠉ ⠀⠀⠼⠋⠄⠁⠀⠁⠇⠇⠛⠑⠍⠩⠝⠑⠎⠀⠵⠥⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠀⠼⠁⠚⠑ ⠀⠀⠼⠋⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠚⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊⠊⠊ ⠀⠀⠼⠋⠄⠉⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠤ ⠀⠀⠀⠀⠀⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠚⠓ ⠀⠀⠼⠋⠄⠙⠀⠍⠑⠓⠗⠵⠩⠇⠊⠛⠑⠀⠅⠇⠁⠍⠍⠑⠗⠡⠎⠙⠗⠳⠤ ⠀⠀⠀⠀⠀⠀⠉⠅⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠁⠁ ⠀⠀⠼⠋⠄⠑⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠾⠗⠊⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠁⠛ ⠀⠀⠼⠋⠄⠋⠀⠞⠑⠭⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠤ ⠀⠀⠀⠀⠀⠀⠞⠓⠑⠍⠁⠞⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠚ ⠼⠛⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠉ ⠀⠀⠼⠛⠄⠁⠀⠍⠕⠙⠥⠇⠁⠗⠑⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠉ ⠀⠀⠼⠛⠄⠃⠀⠙⠑⠋⠊⠝⠬⠗⠞⠑⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠊ ⠀⠀⠼⠛⠄⠉⠀⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠀⠧⠕⠝⠀⠏⠋⠩⠇⠑⠝⠀⠄⠄⠀⠼⠁⠉⠁ ⠼⠓⠀⠩⠝⠋⠁⠹⠑⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑ ⠀⠀⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠉⠑ ⠀⠀⠼⠓⠄⠁⠀⠩⠝⠋⠁⠹⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠀⠼⠁⠉⠊ ⠀⠀⠼⠓⠄⠃⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠤ ⠀⠀⠀⠀⠀⠀⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠙⠃ ⠼⠊⠀⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠙⠛ ⠀⠀⠼⠊⠄⠁⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠀⠥⠝⠙⠀⠛⠑⠍⠊⠱⠞⠑ ⠀⠀⠀⠀⠀⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠙⠛ ⠀⠀⠼⠊⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑⠀⠄⠄⠄⠄⠀⠼⠁⠑⠚ ⠀⠀⠼⠊⠄⠉⠀⠡⠎⠋⠳⠓⠗⠇⠊⠹⠑⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑⠀⠀⠼⠁⠑⠃ ⠀⠀⠼⠊⠄⠙⠀⠍⠑⠓⠗⠋⠁⠹⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠑⠋ ⠼⠁⠚⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠞⠑⠹⠝⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠑⠊ ⠀⠀⠼⠁⠚⠄⠁⠀⠩⠝⠋⠁⠹⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠄⠄⠄⠄⠄⠀⠼⠁⠋⠁ ⠀⠀⠼⠁⠚⠄⠃⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠄⠄⠀⠼⠁⠋⠙ ⠀⠀⠼⠁⠚⠄⠉⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠀⠼⠁⠋⠋ ⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠁⠀⠓⠊⠝⠞⠑⠗⠑⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊⠧ ⠀⠀⠀⠀⠀⠀⠀⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠋⠛ ⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠃⠀⠧⠕⠗⠙⠑⠗⠑⠀⠊⠝⠙⠊⠵⠑⠎⠀⠄⠄⠄⠀⠼⠁⠛⠃ ⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠉⠀⠊⠝⠙⠊⠵⠑⠎⠀⠡⠎⠀⠛⠁⠝⠵⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠛⠙ ⠀⠀⠼⠁⠚⠄⠙⠀⠺⠥⠗⠵⠑⠇⠝⠀⠥⠝⠙⠀⠵⠥⠎⠜⠞⠵⠑⠀⠄⠄⠄⠀⠼⠁⠛⠋ ⠼⠁⠁⠀⠁⠝⠁⠇⠽⠎⠊⠎⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠛⠊ ⠀⠀⠼⠁⠁⠄⠁⠀⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠚ ⠀⠀⠼⠁⠁⠄⠃⠀⠇⠕⠛⠁⠗⠊⠞⠓⠍⠥⠎⠤⠀⠥⠝⠙⠀⠑⠭⠏⠕⠤ ⠀⠀⠀⠀⠀⠀⠝⠑⠝⠞⠊⠁⠇⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠁ ⠀⠀⠼⠁⠁⠄⠉⠀⠊⠝⠞⠑⠛⠗⠁⠇⠤⠀⠥⠝⠙⠀⠙⠊⠋⠋⠑⠗⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠞⠊⠁⠇⠗⠑⠹⠝⠥⠝⠛⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠙ ⠼⠁⠃⠀⠍⠑⠝⠛⠑⠝⠇⠑⠓⠗⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠛ ⠼⠁⠉⠀⠇⠕⠛⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠊⠁ ⠼⠁⠙⠀⠛⠑⠕⠍⠑⠞⠗⠬⠂⠀⠞⠗⠊⠛⠕⠝⠕⠍⠑⠞⠗⠬⠀⠥⠝⠙ ⠀⠀⠀⠀⠧⠑⠅⠞⠕⠗⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠊⠉ ⠀⠀⠼⠁⠙⠄⠁⠀⠛⠑⠕⠍⠑⠞⠗⠊⠱⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠀⠼⠁⠊⠉ ⠀⠀⠼⠁⠙⠄⠃⠀⠺⠊⠝⠅⠑⠇⠤⠂⠀⠓⠽⠏⠑⠗⠃⠑⠇⠋⠥⠝⠅⠤ ⠀⠀⠀⠀⠀⠀⠞⠊⠕⠝⠑⠝⠀⠥⠝⠙⠀⠥⠍⠅⠑⠓⠗⠥⠝⠛⠑⠝⠀⠄⠄⠀⠼⠁⠊⠑ ⠀⠀⠼⠁⠙⠄⠉⠀⠧⠑⠅⠞⠕⠗⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠊⠊ ⠼⠁⠑⠀⠏⠇⠁⠞⠵⠓⠁⠇⠞⠑⠗⠀⠥⠝⠙⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑ ⠀⠀⠀⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠚⠉ ⠀⠀⠼⠁⠑⠄⠁⠀⠏⠇⠁⠞⠵⠓⠁⠇⠞⠑⠗⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠚⠉ ⠀⠀⠼⠁⠑⠄⠃⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠋⠁⠎⠎⠥⠝⠛⠑⠝⠀⠥⠝⠙⠀⠇⠬⠛⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠚⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧ ⠙⠗⠊⠞⠞⠑⠗⠀⠃⠁⠝⠙ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠁⠝⠓⠜⠝⠛⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠁ ⠘⠁⠼⠁⠀⠱⠗⠊⠋⠞⠇⠊⠹⠑⠀⠗⠑⠹⠑⠝⠧⠑⠗⠋⠁⠓⠗⠑⠝ ⠀⠀⠀⠀⠳⠃⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠁ ⠀⠀⠘⠁⠼⠁⠄⠁⠀⠁⠙⠙⠊⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠑ ⠀⠀⠘⠁⠼⠁⠄⠃⠀⠎⠥⠃⠞⠗⠁⠅⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠛ ⠀⠀⠘⠁⠼⠁⠄⠉⠀⠍⠥⠇⠞⠊⠏⠇⠊⠅⠁⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠊ ⠀⠀⠘⠁⠼⠁⠄⠙⠀⠙⠊⠧⠊⠎⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠃⠁ ⠀⠀⠘⠁⠼⠁⠄⠑⠀⠇⠊⠝⠑⠁⠗⠑⠀⠁⠙⠙⠊⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠀⠼⠃⠃⠉ ⠀⠀⠘⠁⠼⠁⠄⠋⠀⠙⠁⠎⠀⠇⠪⠎⠑⠝⠀⠧⠕⠝⠀⠛⠇⠩⠹⠥⠝⠤ ⠀⠀⠀⠀⠀⠀⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠃⠋ ⠘⠁⠼⠃⠀⠜⠝⠙⠑⠗⠥⠝⠛⠑⠝⠀⠊⠝⠀⠙⠑⠗ ⠀⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠃⠊ ⠀⠀⠘⠁⠼⠃⠄⠁⠀⠛⠑⠜⠝⠙⠑⠗⠞⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠀⠼⠃⠃⠊ ⠀⠀⠘⠁⠼⠃⠄⠃⠀⠝⠣⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠚ ⠀⠀⠘⠁⠼⠃⠄⠉⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠃ ⠀⠀⠘⠁⠼⠃⠄⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠥⠝⠙⠀⠊⠝⠙⠊⠵⠑⠎⠀⠼⠃⠉⠉ ⠀⠀⠘⠁⠼⠃⠄⠑⠀⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠉ ⠀⠀⠘⠁⠼⠃⠄⠋⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠙ ⠀⠀⠘⠁⠼⠃⠄⠛⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠥⠝⠙⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑ ⠀⠀⠀⠀⠀⠀⠾⠗⠊⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠑ ⠀⠀⠘⠁⠼⠃⠄⠓⠀⠩⠝⠓⠩⠞⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠛ ⠀⠀⠘⠁⠼⠃⠄⠊⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠛ ⠀⠀⠘⠁⠼⠃⠄⠁⠚⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠞⠑⠹⠝⠊⠅⠀⠄⠄⠄⠄⠄⠀⠼⠃⠉⠓ ⠀⠀⠘⠁⠼⠃⠄⠁⠁⠀⠺⠑⠹⠎⠑⠇⠀⠵⠺⠊⠱⠑⠝⠀⠞⠑⠭⠞⠤ ⠀⠀⠀⠀⠀⠀⠥⠝⠙⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠀⠼⠃⠉⠓ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧⠊ ⠀⠀⠘⠁⠼⠃⠄⠁⠃⠀⠎⠕⠝⠾⠊⠛⠑⠎⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠊ ⠘⠁⠼⠉⠀⠛⠇⠕⠎⠎⠁⠗⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠙⠁ ⠘⠁⠼⠙⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠵⠩⠹⠑⠝⠂⠀⠛⠑⠕⠗⠙⠤ ⠀⠀⠀⠀⠝⠑⠞⠀⠝⠁⠹⠀⠙⠑⠗⠀⠼⠋⠤⠏⠥⠝⠅⠞⠑⠤ ⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠤⠞⠁⠃⠑⠇⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠑⠁ ⠘⠁⠼⠑⠀⠁⠇⠏⠓⠁⠃⠑⠞⠊⠱⠑⠎⠀⠎⠁⠹⠗⠑⠛⠊⠾⠑⠗⠀⠄⠄⠀⠼⠃⠓⠁ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧⠊⠊ ⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧⠊⠊⠊ ⠧⠕⠗⠺⠕⠗⠞ ⠶⠶⠶⠶⠶⠶⠶ ⠀⠀⠙⠁⠎⠀⠧⠕⠗⠇⠬⠛⠑⠝⠙⠑⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠀⠊⠾⠀⠙⠁⠎ ⠑⠗⠛⠑⠃⠝⠊⠎⠀⠩⠝⠑⠗⠀⠛⠗⠕⠮⠑⠝⠀⠳⠃⠑⠗⠁⠗⠃⠩⠞⠥⠝⠛ ⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠎⠩⠞⠀⠙⠑⠗⠀⠑⠝⠞⠾⠑⠓⠥⠝⠛⠀⠙⠑⠗⠀⠦⠊⠝⠞⠑⠗⠝⠁⠞⠊⠕⠝⠁⠤ ⠇⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠋⠳⠗⠀⠃⠇⠊⠝⠙⠑⠴⠄⠀⠙⠬⠤ ⠎⠑⠀⠺⠥⠗⠙⠑⠀⠊⠝⠀⠙⠑⠝⠀⠼⠁⠊⠃⠚⠠⠑⠗⠀⠚⠁⠓⠗⠑⠝⠀⠧⠕⠝ ⠧⠑⠗⠞⠗⠑⠞⠑⠗⠝⠀⠩⠝⠊⠛⠑⠗⠀⠇⠜⠝⠙⠑⠗⠀⠡⠎⠛⠑⠁⠗⠃⠩⠞⠑⠞ ⠥⠝⠙⠀⠎⠕⠗⠛⠞⠑⠀⠙⠁⠋⠳⠗⠂⠀⠙⠁⠎⠎⠀⠙⠬⠀⠺⠑⠎⠑⠝⠞⠇⠊⠤ ⠹⠑⠝⠀⠑⠇⠑⠍⠑⠝⠞⠑⠠⠤⠀⠎⠽⠍⠃⠕⠇⠑⠀⠺⠬⠀⠡⠹⠀⠙⠁⠗⠾⠑⠇⠤ ⠇⠥⠝⠛⠎⠞⠑⠹⠝⠊⠅⠑⠝⠠⠤⠀⠩⠝⠑⠀⠺⠩⠞⠛⠑⠓⠑⠝⠙⠑⠀⠊⠝⠤ ⠞⠑⠗⠝⠁⠞⠊⠕⠝⠁⠇⠑⠀⠩⠝⠓⠩⠞⠇⠊⠹⠅⠩⠞⠀⠡⠋⠺⠬⠎⠑⠝⠄ ⠀⠀⠎⠏⠥⠗⠑⠝⠀⠙⠬⠎⠑⠗⠀⠩⠝⠓⠩⠞⠇⠊⠹⠅⠩⠞⠀⠎⠊⠝⠙⠀⠩⠝ ⠅⠝⠁⠏⠏⠑⠎⠀⠚⠁⠓⠗⠓⠥⠝⠙⠑⠗⠞⠀⠎⠏⠜⠞⠑⠗⠀⠊⠍⠍⠑⠗⠀⠝⠕⠹ ⠑⠗⠅⠑⠝⠝⠃⠁⠗⠄⠀⠡⠹⠀⠺⠑⠝⠝⠀⠙⠬⠀⠹⠊⠝⠑⠎⠊⠱⠑ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠑⠗⠺⠁⠗⠞⠥⠝⠛⠎⠛⠑⠍⠜⠮⠀⠛⠁⠝⠵ ⠁⠝⠙⠑⠗⠎⠀⠊⠾⠀⠁⠇⠎⠀⠙⠬⠀⠙⠣⠞⠱⠑⠂⠀⠺⠑⠗⠙⠑⠝⠀⠅⠑⠝⠤ ⠝⠑⠗⠀⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠱⠗⠊⠋⠞⠀⠃⠩⠍⠀⠃⠑⠞⠗⠁⠹⠞⠑⠝⠀⠙⠑⠗⠀⠹⠊⠝⠑⠎⠊⠱⠑⠝⠀⠡⠋ ⠧⠑⠗⠞⠗⠡⠞⠑⠎⠀⠾⠕⠮⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁ ⠑⠝⠞⠺⠊⠉⠅⠇⠥⠝⠛ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠙⠬⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠺⠊⠗⠙⠀⠅⠕⠝⠞⠊⠝⠥⠊⠑⠗⠇⠊⠹ ⠝⠣⠑⠝⠀⠃⠑⠙⠳⠗⠋⠝⠊⠎⠎⠑⠝⠀⠥⠝⠙⠀⠓⠑⠗⠡⠎⠋⠕⠗⠙⠑⠗⠥⠝⠤ ⠛⠑⠝⠀⠁⠝⠛⠑⠏⠁⠎⠎⠞⠄⠀⠕⠋⠞⠀⠺⠑⠗⠙⠑⠝⠀⠙⠬⠀⠱⠗⠊⠋⠞⠑⠝ ⠋⠳⠗⠀⠩⠝⠵⠑⠇⠝⠑⠀⠎⠏⠗⠁⠹⠑⠝⠀⠥⠝⠁⠃⠓⠜⠝⠛⠊⠛⠀⠧⠕⠝⠤ ⠩⠝⠁⠝⠙⠑⠗⠀⠺⠩⠞⠑⠗⠑⠝⠞⠺⠊⠉⠅⠑⠇⠞⠠⠤⠀⠥⠝⠙⠀⠍⠊⠞ ⠊⠓⠝⠑⠝⠀⠙⠬⠀⠚⠑⠺⠩⠇⠊⠛⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠤ ⠞⠑⠝⠄⠀⠊⠍⠀⠵⠥⠛⠑⠀⠙⠬⠎⠑⠗⠀⠑⠝⠞⠺⠊⠉⠅⠇⠥⠝⠛⠑⠝ ⠞⠗⠁⠞⠑⠝⠀⠁⠝⠀⠙⠬⠀⠾⠑⠇⠇⠑⠀⠊⠝⠞⠑⠗⠝⠁⠞⠊⠕⠝⠁⠇⠑⠗ ⠛⠑⠍⠩⠝⠎⠁⠍⠅⠩⠞⠑⠝⠀⠵⠥⠝⠑⠓⠍⠑⠝⠙⠀⠧⠕⠝⠩⠝⠁⠝⠙⠑⠗ ⠥⠝⠁⠃⠓⠜⠝⠛⠊⠛⠑⠂⠀⠩⠛⠑⠝⠾⠜⠝⠙⠊⠛⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠱⠗⠊⠋⠞⠑⠝⠄ ⠀⠀⠊⠍⠀⠙⠣⠞⠱⠑⠝⠀⠎⠏⠗⠁⠹⠗⠡⠍⠀⠺⠥⠗⠙⠑⠀⠁⠃⠀⠙⠑⠝ ⠼⠁⠊⠑⠚⠠⠑⠗⠀⠚⠁⠓⠗⠑⠝⠀⠩⠝⠑⠀⠳⠃⠑⠗⠁⠗⠃⠩⠞⠥⠝⠛ ⠧⠕⠗⠛⠑⠝⠕⠍⠍⠑⠝⠀⠥⠝⠙⠀⠊⠝⠀⠩⠝⠑⠍⠀⠝⠣⠑⠝⠀⠗⠑⠛⠑⠇⠤ ⠺⠑⠗⠅⠀⠋⠑⠾⠛⠑⠓⠁⠇⠞⠑⠝⠀⠶⠼⠁⠊⠑⠑⠠⠂⠀⠼⠆⠀⠡⠋⠇⠁⠛⠑ ⠼⠁⠊⠓⠋⠠⠶⠄⠀⠊⠍⠀⠇⠡⠋⠑⠀⠙⠑⠗⠀⠵⠩⠞⠀⠑⠝⠞⠾⠁⠝⠙⠑⠝ ⠚⠑⠙⠕⠹⠀⠗⠑⠛⠊⠕⠝⠁⠇⠑⠀⠧⠁⠗⠊⠁⠝⠞⠑⠝⠄⠀⠎⠕⠀⠑⠝⠞⠤ ⠺⠊⠉⠅⠑⠇⠞⠑⠝⠀⠎⠊⠹⠀⠙⠬⠀⠝⠕⠞⠁⠞⠊⠕⠝⠑⠝⠀⠊⠝⠀⠙⠑⠗ ⠘⠃⠗⠙⠀⠥⠝⠙⠀⠊⠝⠀⠪⠾⠑⠗⠗⠩⠹⠂⠀⠊⠝⠀⠙⠑⠗⠀⠘⠙⠙⠗⠀⠥⠝⠙ ⠊⠝⠀⠙⠑⠗⠀⠱⠺⠩⠵⠀⠡⠎⠩⠝⠁⠝⠙⠑⠗⠄⠀⠥⠍⠀⠙⠬⠀⠍⠁⠞⠓⠑⠤ ⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠋⠳⠗⠀⠙⠬⠎⠑⠝⠀⠎⠏⠗⠁⠹⠗⠡⠍⠀⠺⠬⠙⠑⠗ ⠵⠥⠀⠧⠑⠗⠩⠝⠓⠩⠞⠇⠊⠹⠑⠝⠀⠥⠝⠙⠀⠎⠕⠍⠊⠞⠀⠙⠬⠀⠡⠎⠞⠡⠱⠤ ⠃⠁⠗⠅⠩⠞⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠇⠊⠞⠑⠗⠁⠞⠥⠗⠀⠝⠊⠹⠞ ⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠒⠀⠑⠝⠞⠺⠊⠉⠅⠇⠥⠝⠛⠀⠀⠀⠀⠀⠀⠀⠼⠃ ⠺⠩⠞⠑⠗⠀⠩⠝⠵⠥⠱⠗⠜⠝⠅⠑⠝⠂⠀⠺⠥⠗⠙⠑⠀⠼⠃⠚⠚⠋⠀⠧⠕⠍ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠕⠍⠊⠞⠑⠑⠀⠙⠑⠗⠀⠙⠣⠞⠱⠎⠏⠗⠁⠹⠊⠤ ⠛⠑⠝⠀⠇⠜⠝⠙⠑⠗⠀⠩⠝⠑⠀⠥⠝⠞⠑⠗⠅⠕⠍⠍⠊⠎⠎⠊⠕⠝⠀⠛⠑⠤ ⠃⠊⠇⠙⠑⠞⠄ ⠅⠕⠍⠏⠁⠅⠞⠓⠩⠞⠀⠧⠑⠗⠎⠥⠎ ⠅⠕⠝⠞⠑⠭⠞⠥⠝⠁⠃⠓⠜⠝⠛⠊⠛⠅⠩⠞ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠞⠗⠁⠙⠊⠞⠊⠕⠝⠑⠇⠇⠀⠓⠁⠃⠑⠝⠀⠵⠁⠓⠇⠗⠩⠹⠑ ⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠁⠝⠙⠑⠗⠑⠀⠺⠑⠗⠞⠑⠀⠕⠙⠑⠗⠀⠃⠑⠙⠣⠞⠥⠝⠛⠑⠝⠀⠁⠇⠎⠀⠊⠝ ⠙⠑⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠄⠀⠩⠝⠑⠀⠥⠍⠙⠣⠞⠥⠝⠛⠀⠙⠑⠗⠀⠼⠋⠙ ⠍⠪⠛⠇⠊⠹⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠑⠗⠇⠡⠃⠞⠀⠩⠝⠑ ⠎⠑⠓⠗⠀⠅⠕⠍⠏⠁⠅⠞⠑⠠⠤⠀⠥⠝⠙⠀⠙⠁⠓⠑⠗⠀⠳⠃⠑⠗⠎⠊⠹⠞⠤ ⠇⠊⠹⠑⠠⠤⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝ ⠝⠕⠞⠁⠞⠊⠕⠝⠄⠀⠙⠬⠎⠀⠍⠊⠞⠀⠙⠑⠍⠀⠅⠕⠍⠏⠗⠕⠍⠊⠎⠎⠂ ⠙⠁⠎⠎⠀⠙⠬⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠑⠗⠾⠀⠙⠁⠝⠝⠀⠩⠝⠙⠣⠤ ⠞⠊⠛⠀⠎⠊⠝⠙⠂⠀⠺⠑⠝⠝⠀⠎⠬⠀⠅⠇⠁⠗⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠅⠤⠀⠕⠙⠑⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠵⠥⠛⠑⠕⠗⠙⠝⠑⠞⠀⠺⠑⠗⠤ ⠙⠑⠝⠀⠅⠪⠝⠝⠑⠝⠄ ⠀⠀⠊⠝⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠝⠀⠎⠏⠗⠁⠹⠑⠝⠀⠋⠁⠝⠙⠀⠙⠁⠛⠑⠛⠑⠝ ⠩⠝⠀⠏⠁⠗⠁⠙⠊⠛⠍⠑⠝⠺⠑⠹⠎⠑⠇⠀⠾⠁⠞⠞⠄⠀⠙⠥⠗⠹⠀⠙⠬ ⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠎⠽⠍⠃⠕⠇⠑⠀⠙⠥⠗⠹ ⠇⠜⠝⠛⠑⠗⠑⠀⠅⠕⠍⠃⠊⠝⠁⠞⠊⠕⠝⠑⠝⠀⠧⠕⠝⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠤ ⠹⠑⠝⠀⠎⠊⠝⠙⠀⠎⠬⠀⠎⠕⠺⠕⠓⠇⠀⠊⠝⠀⠁⠇⠇⠛⠑⠍⠩⠝⠑⠝⠀⠁⠇⠎ ⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠒⠀⠅⠕⠍⠏⠁⠅⠞⠓⠩⠞⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉ ⠡⠹⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠅⠕⠝⠞⠑⠭⠞⠑⠝⠀⠩⠝⠙⠣⠤ ⠞⠊⠛⠄⠀⠙⠁⠃⠩⠀⠛⠑⠓⠞⠀⠚⠑⠙⠕⠹⠀⠙⠬⠀⠅⠕⠍⠏⠁⠅⠞⠓⠩⠞ ⠙⠑⠗⠀⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠧⠑⠗⠇⠕⠗⠑⠝⠄ ⠀⠀⠙⠬⠀⠧⠕⠗⠇⠬⠛⠑⠝⠙⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠃⠑⠤ ⠓⠜⠇⠞⠀⠙⠬⠀⠞⠗⠑⠝⠝⠥⠝⠛⠀⠊⠝⠀⠞⠑⠭⠞⠤⠀⠥⠝⠙⠀⠍⠁⠞⠓⠑⠤ ⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠵⠥⠛⠥⠝⠾⠑⠝⠀⠙⠑⠗⠀⠅⠳⠗⠵⠑⠀⠥⠝⠙ ⠳⠃⠑⠗⠎⠊⠹⠞⠇⠊⠹⠅⠩⠞⠀⠙⠑⠗⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠃⠩⠄ ⠁⠇⠇⠑⠗⠙⠊⠝⠛⠎⠀⠅⠕⠝⠝⠞⠑⠝⠀⠁⠝⠝⠜⠓⠑⠗⠥⠝⠛⠑⠝⠀⠁⠝ ⠙⠬⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠑⠗⠗⠩⠹⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠵⠥⠍⠀⠃⠩⠤ ⠎⠏⠬⠇⠀⠊⠝⠀⠙⠑⠗⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠙⠑⠗⠀⠛⠗⠕⠮⠤ ⠥⠝⠙⠀⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛⠄ ⠝⠣⠑⠗⠥⠝⠛⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠦⠙⠁⠎⠀⠎⠽⠾⠑⠍⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠊⠝ ⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠴⠀⠛⠇⠬⠙⠑⠗⠞⠀⠎⠊⠹ ⠊⠝⠀⠵⠺⠩⠀⠞⠩⠇⠑⠄ ⠀⠀⠙⠑⠗⠀⠧⠕⠗⠇⠬⠛⠑⠝⠙⠑⠀⠑⠗⠾⠑⠀⠞⠩⠇⠀⠃⠑⠱⠗⠩⠃⠞⠀⠙⠬ ⠗⠑⠛⠑⠇⠝⠀⠵⠥⠗⠀⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗ ⠎⠁⠹⠧⠑⠗⠓⠁⠇⠞⠑⠀⠊⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠄⠀⠺⠑⠎⠑⠝⠞⠤ ⠇⠊⠹⠑⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠎⠊⠝⠙⠀⠊⠍⠀⠡⠋⠃⠡⠀⠵⠥⠀⠧⠑⠗⠤ ⠵⠩⠹⠝⠑⠝⠄⠀⠵⠩⠹⠑⠝⠇⠊⠾⠑⠝⠀⠇⠩⠞⠑⠝⠀⠙⠬⠀⠚⠑⠺⠩⠇⠊⠤ ⠛⠑⠝⠀⠅⠁⠏⠊⠞⠑⠇⠀⠃⠵⠺⠄⠀⠁⠃⠱⠝⠊⠞⠞⠑⠀⠩⠝⠄⠀⠵⠁⠓⠇⠤ ⠗⠩⠹⠑⠀⠃⠩⠎⠏⠬⠇⠑⠀⠧⠑⠗⠙⠣⠞⠇⠊⠹⠑⠝⠀⠙⠬⠀⠥⠍⠎⠑⠞⠤ ⠵⠥⠝⠛⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇⠝⠄⠀⠩⠝⠀⠛⠇⠕⠎⠎⠁⠗⠀⠅⠇⠜⠗⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠒⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙ ⠎⠏⠑⠵⠊⠋⠊⠱⠑⠀⠃⠑⠛⠗⠊⠋⠋⠇⠊⠹⠅⠩⠞⠑⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠄⠀⠓⠊⠝⠺⠩⠎⠑⠀⠵⠥⠀⠱⠗⠊⠋⠞⠇⠊⠹⠑⠝ ⠗⠑⠹⠑⠝⠧⠑⠗⠋⠁⠓⠗⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠥⠝⠞⠑⠗⠗⠊⠹⠞⠑⠝⠙⠑⠝ ⠙⠑⠝⠀⠵⠥⠛⠁⠝⠛⠀⠵⠥⠗⠀⠏⠗⠁⠅⠞⠊⠱⠑⠝⠀⠁⠗⠃⠩⠞⠀⠍⠊⠞ ⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠑⠗⠇⠩⠹⠞⠑⠗⠝⠄ ⠀⠀⠊⠝⠞⠑⠗⠑⠎⠎⠁⠝⠞⠀⠙⠳⠗⠋⠞⠑⠀⠙⠬⠀⠵⠥⠎⠜⠞⠵⠇⠊⠹⠑ ⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠙⠑⠗⠀⠃⠩⠎⠏⠬⠇⠑⠀⠊⠝⠀⠨⠇⠁⠨⠞⠑⠘⠭ ⠎⠩⠝⠄⠀⠩⠝⠀⠺⠊⠹⠞⠊⠛⠑⠎⠀⠁⠝⠇⠬⠛⠑⠝⠀⠊⠾⠀⠑⠎⠂⠀⠙⠬ ⠗⠊⠹⠞⠊⠛⠅⠩⠞⠀⠙⠑⠗⠀⠩⠛⠑⠝⠑⠝⠀⠊⠝⠞⠑⠗⠏⠗⠑⠞⠁⠞⠊⠕⠝ ⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠃⠩⠎⠏⠬⠇⠑⠀⠳⠃⠑⠗⠏⠗⠳⠋⠑⠝ ⠵⠥⠀⠅⠪⠝⠝⠑⠝⠄⠀⠙⠁⠋⠳⠗⠀⠾⠑⠓⠞⠀⠎⠑⠓⠑⠝⠙⠑⠝⠀⠙⠬ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠵⠥⠗⠀⠧⠑⠗⠋⠳⠛⠥⠝⠛⠄ ⠍⠊⠞⠀⠙⠑⠗⠀⠨⠇⠁⠨⠞⠑⠘⠭⠤⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠺⠊⠗⠙⠀⠙⠑⠝ ⠞⠁⠾⠇⠑⠎⠑⠝⠙⠑⠝⠀⠑⠃⠑⠝⠋⠁⠇⠇⠎⠀⠩⠝⠑⠀⠍⠪⠛⠇⠊⠹⠅⠩⠞ ⠵⠥⠗⠀⠅⠕⠝⠞⠗⠕⠇⠇⠑⠀⠁⠝⠛⠑⠃⠕⠞⠑⠝⠄ ⠀⠀⠩⠝⠑⠀⠛⠗⠥⠝⠙⠇⠑⠛⠑⠝⠙⠑⠀⠝⠣⠑⠗⠥⠝⠛⠀⠃⠑⠞⠗⠊⠋⠋⠞ ⠙⠬⠀⠍⠪⠛⠇⠊⠹⠅⠩⠞⠀⠙⠑⠗⠀⠅⠕⠍⠍⠥⠝⠊⠅⠁⠞⠊⠕⠝⠀⠵⠺⠊⠤ ⠱⠑⠝⠀⠙⠑⠝⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠝⠀⠇⠑⠎⠑⠗⠛⠗⠥⠏⠏⠑⠝⠄⠀⠑⠎ ⠺⠥⠗⠙⠑⠀⠙⠁⠗⠡⠋⠀⠛⠑⠁⠹⠞⠑⠞⠂⠀⠙⠁⠎⠎⠀⠙⠬⠀⠍⠑⠙⠊⠁⠇ ⠥⠝⠞⠑⠗⠱⠬⠙⠇⠊⠹⠑⠝⠀⠡⠎⠛⠁⠃⠑⠝⠀⠺⠬⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠥⠝⠙⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠏⠁⠗⠁⠇⠇⠑⠇⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞ ⠺⠑⠗⠙⠑⠝⠀⠅⠪⠝⠝⠑⠝⠄⠀⠙⠬⠀⠃⠩⠎⠏⠬⠇⠑⠀⠎⠊⠝⠙⠀⠝⠥⠍⠤ ⠍⠑⠗⠬⠗⠞⠀⠥⠝⠙⠀⠙⠑⠗⠀⠞⠑⠭⠞⠀⠺⠥⠗⠙⠑⠀⠎⠕⠀⠡⠋⠛⠑⠤ ⠃⠡⠞⠂⠀⠙⠁⠎⠎⠀⠙⠬⠀⠛⠑⠾⠁⠇⠞⠥⠝⠛⠀⠊⠝⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠥⠝⠙⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠊⠍⠀⠺⠑⠎⠑⠝⠞⠇⠊⠹⠑⠝⠀⠛⠇⠩⠹ ⠊⠾⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠒⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑ ⠀⠀⠙⠑⠝⠀⠵⠺⠩⠞⠑⠝⠀⠞⠩⠇⠀⠃⠊⠇⠙⠑⠞⠀⠩⠝⠀⠗⠑⠇⠊⠑⠋⠤ ⠃⠁⠝⠙⠂⠀⠊⠝⠀⠙⠑⠍⠀⠎⠕⠺⠕⠓⠇⠀⠙⠬⠀⠞⠁⠅⠞⠊⠇⠑⠝ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠎⠽⠍⠃⠕⠇⠑⠀⠁⠇⠎⠀⠡⠹⠀⠙⠬⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠑⠝⠞⠎⠏⠗⠑⠹⠥⠝⠛⠑⠝⠀⠎⠜⠍⠞⠇⠊⠹⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗ ⠵⠩⠹⠑⠝⠀⠡⠎⠀⠙⠑⠍⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠀⠡⠋⠛⠑⠋⠳⠓⠗⠞ ⠎⠊⠝⠙⠄⠀⠙⠁⠍⠊⠞⠀⠺⠊⠗⠙⠀⠙⠬⠀⠅⠕⠍⠍⠥⠝⠊⠅⠁⠞⠊⠕⠝ ⠵⠺⠊⠱⠑⠝⠀⠃⠇⠊⠝⠙⠑⠝⠂⠀⠎⠑⠓⠃⠑⠓⠊⠝⠙⠑⠗⠞⠑⠝⠀⠥⠝⠙ ⠎⠑⠓⠑⠝⠙⠑⠝⠀⠊⠝⠞⠑⠗⠑⠎⠎⠬⠗⠞⠑⠝⠀⠑⠗⠇⠩⠹⠞⠑⠗⠞⠄ ⠀⠀⠡⠋⠀⠙⠑⠗⠀⠺⠑⠃⠎⠊⠞⠑⠀⠙⠑⠎⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠕⠤ ⠍⠊⠞⠑⠑⠎⠀⠙⠑⠗⠀⠙⠣⠞⠱⠎⠏⠗⠁⠹⠊⠛⠑⠝⠀⠇⠜⠝⠙⠑⠗ ⠶⠘⠃⠎⠅⠙⠇⠶⠀⠅⠪⠝⠝⠑⠝⠀⠺⠩⠞⠑⠗⠑⠀⠃⠩⠎⠏⠬⠇⠑⠀⠁⠝⠛⠑⠤ ⠎⠑⠓⠑⠝⠀⠥⠝⠙⠀⠑⠗⠛⠜⠝⠵⠞⠀⠺⠑⠗⠙⠑⠝⠀⠶⠠⠨⠺⠺⠺⠄⠈ ⠃⠎⠅⠙⠇⠄⠕⠗⠛⠠⠄⠶⠄ ⠀⠀⠙⠬⠀⠊⠝⠓⠁⠇⠞⠇⠊⠹⠑⠝⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠙⠑⠗⠀⠱⠗⠊⠋⠞ ⠎⠊⠝⠙⠀⠊⠍⠀⠁⠝⠓⠁⠝⠛⠀⠦⠘⠁⠼⠃⠀⠜⠝⠙⠑⠗⠥⠝⠛⠑⠝⠀⠊⠝ ⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠴⠀⠵⠥⠎⠁⠍⠍⠑⠝⠛⠑⠤ ⠋⠁⠎⠎⠞⠄ ⠀⠀⠙⠬⠎⠑⠎⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠀⠊⠾⠀⠝⠊⠹⠞⠀⠁⠇⠎⠀⠇⠑⠓⠗⠤ ⠺⠑⠗⠅⠀⠅⠕⠝⠵⠊⠏⠬⠗⠞⠄⠀⠋⠳⠗⠀⠃⠇⠊⠝⠙⠑⠀⠥⠝⠙⠀⠎⠑⠤ ⠓⠑⠝⠙⠑⠀⠥⠝⠞⠑⠗⠗⠊⠹⠞⠑⠝⠙⠑⠂⠀⠳⠃⠑⠗⠞⠗⠁⠛⠑⠝⠙⠑ ⠎⠕⠺⠬⠀⠇⠑⠎⠑⠝⠙⠑⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠎⠕⠇⠇ ⠙⠬⠎⠑⠀⠓⠁⠝⠙⠗⠩⠹⠥⠝⠛⠀⠙⠬⠀⠛⠗⠥⠝⠙⠎⠜⠞⠵⠑⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠶⠎⠬⠓⠑⠀⠦⠎⠽⠾⠑⠍⠀⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝ ⠃⠇⠊⠝⠙⠑⠝⠱⠗⠊⠋⠞⠴⠶⠀⠎⠏⠑⠵⠊⠑⠇⠇⠀⠡⠋⠀⠙⠑⠍⠀⠛⠑⠃⠬⠞ ⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠀⠑⠗⠛⠜⠝⠵⠑⠝⠄⠀⠑⠎⠀⠃⠡⠞⠀⠁⠇⠎⠕ ⠡⠋⠀⠙⠑⠍⠀⠛⠗⠥⠝⠙⠗⠑⠛⠑⠇⠺⠑⠗⠅⠀⠡⠋⠀⠥⠝⠙⠀⠎⠑⠞⠵⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠒⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋ ⠙⠑⠎⠎⠑⠝⠀⠅⠑⠝⠝⠞⠝⠊⠎⠀⠧⠕⠗⠡⠎⠄ ⠃⠁⠎⠑⠇⠂⠀⠚⠁⠝⠥⠁⠗⠀⠼⠃⠚⠁⠑ ⠊⠍⠀⠝⠁⠍⠑⠝⠀⠙⠑⠗⠀⠥⠝⠞⠑⠗⠅⠕⠍⠍⠊⠎⠎⠊⠕⠝ ⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠙⠑⠎⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠕⠍⠊⠞⠑⠑⠎⠀⠙⠑⠗ ⠙⠣⠞⠱⠎⠏⠗⠁⠹⠊⠛⠑⠝⠀⠇⠜⠝⠙⠑⠗ ⠙⠁⠎⠀⠗⠑⠙⠁⠅⠞⠊⠕⠝⠎⠞⠑⠁⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠒⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛ ⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠗⠺⠕⠗⠞⠒⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓ ⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠀⠙⠬⠎⠑⠎⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠎ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠡⠋⠃⠡ ⠒⠒⠒⠒ ⠀⠀⠙⠬⠎⠑⠎⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠀⠺⠊⠗⠙⠀⠊⠝⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠥⠝⠙⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠓⠑⠗⠡⠎⠛⠑⠛⠑⠃⠑⠝⠄⠀⠩⠝⠑⠀⠋⠩⠤ ⠝⠑⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠍⠊⠞⠀⠙⠑⠵⠊⠍⠁⠇⠅⠇⠁⠎⠎⠊⠋⠊⠅⠁⠤ ⠞⠊⠕⠝⠀⠙⠬⠝⠞⠀⠙⠑⠗⠀⠕⠗⠊⠑⠝⠞⠬⠗⠥⠝⠛⠀⠊⠍⠀⠺⠑⠗⠅ ⠥⠝⠙⠀⠑⠗⠇⠩⠹⠞⠑⠗⠞⠀⠙⠬⠀⠅⠕⠍⠍⠥⠝⠊⠅⠁⠞⠊⠕⠝⠀⠃⠩ ⠙⠑⠗⠀⠁⠗⠃⠩⠞⠀⠍⠊⠞⠀⠙⠑⠝⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠝⠀⠍⠑⠙⠊⠁⠤ ⠇⠑⠝⠀⠡⠎⠛⠁⠃⠑⠋⠕⠗⠍⠑⠝⠄⠀⠙⠬⠀⠝⠥⠍⠍⠑⠗⠬⠗⠥⠝⠛⠀⠙⠑⠗ ⠃⠩⠎⠏⠬⠇⠑⠀⠎⠏⠬⠛⠑⠇⠞⠀⠙⠬⠎⠑⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠺⠊⠤ ⠙⠑⠗⠄ ⠀⠀⠩⠝⠋⠳⠓⠗⠑⠝⠙⠀⠺⠑⠗⠙⠑⠝⠀⠛⠗⠥⠝⠙⠇⠑⠛⠑⠝⠙⠑⠀⠞⠑⠹⠤ ⠝⠊⠅⠑⠝⠀⠥⠝⠙⠀⠓⠊⠝⠺⠩⠎⠑⠀⠵⠥⠗⠀⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠧⠕⠝ ⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠊⠍ ⠅⠁⠏⠊⠞⠑⠇⠀⠼⠁⠀⠑⠗⠇⠌⠞⠑⠗⠞⠄⠀⠙⠬⠀⠅⠁⠏⠊⠞⠑⠇⠀⠼⠃ ⠃⠊⠎⠀⠼⠁⠁⠀⠋⠳⠓⠗⠑⠝⠀⠙⠬⠀⠩⠝⠵⠑⠇⠝⠑⠝⠀⠑⠇⠑⠍⠑⠝⠞⠑ ⠙⠑⠗⠀⠝⠕⠞⠁⠞⠊⠕⠝⠀⠥⠝⠙⠀⠙⠑⠗⠑⠝⠀⠛⠑⠃⠗⠡⠹⠀⠩⠝⠄ ⠁⠃⠱⠇⠬⠮⠑⠝⠙⠀⠋⠕⠅⠥⠎⠎⠬⠗⠑⠝⠀⠙⠬⠀⠅⠁⠏⠊⠞⠑⠇⠀⠼⠁⠃ ⠃⠊⠎⠀⠼⠁⠑⠀⠡⠋⠀⠡⠎⠛⠑⠺⠜⠓⠇⠞⠑⠀⠛⠑⠃⠬⠞⠑⠀⠙⠑⠗⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠒⠀⠡⠋⠃⠡⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊ ⠀⠀⠊⠝⠀⠁⠝⠓⠜⠝⠛⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠁⠝⠗⠑⠛⠥⠝⠛⠑⠝⠀⠵⠥⠍ ⠁⠗⠃⠩⠞⠑⠝⠀⠍⠊⠞⠀⠱⠗⠊⠋⠞⠇⠊⠹⠑⠝⠀⠗⠑⠹⠑⠝⠧⠑⠗⠋⠁⠓⠤ ⠗⠑⠝⠀⠛⠑⠛⠑⠃⠑⠝⠂⠀⠙⠬⠀⠜⠝⠙⠑⠗⠥⠝⠛⠑⠝⠀⠥⠝⠙⠀⠝⠣⠑⠤ ⠗⠥⠝⠛⠑⠝⠀⠙⠬⠎⠑⠗⠀⠳⠃⠑⠗⠁⠗⠃⠩⠞⠥⠝⠛⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠤ ⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠡⠋⠛⠑⠇⠊⠾⠑⠞⠀⠥⠝⠙⠀⠃⠗⠁⠊⠇⠇⠑⠎⠏⠑⠤ ⠵⠊⠋⠊⠱⠑⠀⠋⠁⠹⠡⠎⠙⠗⠳⠉⠅⠑⠀⠊⠝⠀⠩⠝⠑⠍⠀⠛⠇⠕⠎⠎⠁⠗ ⠑⠗⠅⠇⠜⠗⠞⠄ ⠀⠀⠋⠳⠗⠀⠩⠝⠑⠀⠱⠝⠑⠇⠇⠑⠀⠎⠥⠹⠑⠀⠾⠑⠓⠑⠝⠀⠩⠝⠑⠀⠇⠊⠾⠑ ⠁⠇⠇⠑⠗⠀⠃⠑⠓⠁⠝⠙⠑⠇⠞⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠥⠝⠙ ⠩⠝⠀⠎⠁⠹⠗⠑⠛⠊⠾⠑⠗⠀⠵⠥⠗⠀⠧⠑⠗⠋⠳⠛⠥⠝⠛⠄ ⠀⠀⠙⠬⠀⠩⠝⠵⠑⠇⠝⠑⠝⠀⠞⠓⠑⠍⠑⠝⠛⠑⠃⠬⠞⠑⠀⠎⠊⠝⠙⠀⠺⠬ ⠋⠕⠇⠛⠞⠀⠛⠑⠛⠇⠬⠙⠑⠗⠞⠒ ⠠⠤⠀⠵⠩⠹⠑⠝⠇⠊⠾⠑ ⠠⠤⠀⠗⠑⠛⠑⠇⠝⠀⠥⠝⠙⠀⠑⠗⠇⠌⠞⠑⠗⠥⠝⠛⠑⠝ ⠠⠤⠀⠃⠩⠎⠏⠬⠇⠑ ⠀⠀⠚⠑⠙⠑⠎⠀⠃⠩⠎⠏⠬⠇⠀⠑⠗⠱⠩⠝⠞⠀⠊⠝⠀⠵⠺⠩⠀⠃⠵⠺⠄ ⠙⠗⠩⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠑⠝⠒ ⠠⠤⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠶⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠡⠎⠛⠁⠃⠑⠶ ⠠⠤⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠠⠤⠀⠨⠇⠁⠨⠞⠑⠘⠭⠤⠱⠗⠩⠃⠺⠩⠎⠑ ⠀⠀⠩⠝⠑⠀⠡⠎⠝⠁⠓⠍⠑⠀⠃⠊⠇⠙⠑⠝⠀⠙⠬⠀⠃⠩⠎⠏⠬⠇⠑⠀⠊⠍ ⠦⠁⠝⠓⠁⠝⠛⠀⠘⠁⠼⠁⠀⠱⠗⠊⠋⠞⠇⠊⠹⠑⠀⠗⠑⠹⠑⠝⠧⠑⠗⠋⠁⠓⠤ ⠗⠑⠝⠀⠳⠃⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝⠴⠂⠀⠙⠬⠀⠝⠥⠗⠀⠊⠝ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠑⠗⠱⠩⠝⠑⠝⠄⠀⠓⠬⠗⠀⠾⠑⠓⠞⠀⠝⠑⠃⠑⠝ ⠥⠍⠎⠑⠞⠵⠥⠝⠛⠎⠤⠀⠥⠝⠙⠀⠛⠑⠾⠁⠇⠞⠥⠝⠛⠎⠍⠪⠛⠇⠊⠹⠅⠩⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠒⠀⠡⠋⠃⠡⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚ ⠞⠑⠝⠀⠙⠬⠀⠏⠗⠁⠅⠞⠊⠱⠑⠀⠁⠗⠃⠩⠞⠀⠍⠊⠞⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠊⠍⠀⠧⠕⠗⠙⠑⠗⠛⠗⠥⠝⠙⠄ ⠀⠀⠊⠝⠀⠩⠝⠑⠍⠀⠵⠺⠩⠞⠑⠝⠀⠞⠩⠇⠀⠎⠕⠇⠇⠑⠝⠀⠗⠑⠇⠊⠑⠋⠤ ⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠑⠝⠀⠃⠇⠊⠝⠙⠑⠝⠀⠇⠑⠎⠑⠝⠙⠑⠝⠀⠍⠁⠞⠓⠑⠤ ⠍⠁⠞⠊⠱⠑⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠎⠽⠍⠃⠕⠇⠑⠀⠑⠗⠋⠁⠓⠗⠃⠁⠗ ⠍⠁⠹⠑⠝⠀⠥⠝⠙⠀⠙⠬⠀⠅⠕⠍⠍⠥⠝⠊⠅⠁⠞⠊⠕⠝⠀⠍⠊⠞⠀⠁⠝⠙⠑⠤ ⠗⠑⠝⠀⠑⠗⠇⠩⠹⠞⠑⠗⠝⠄ ⠀⠀⠙⠁⠎⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠕⠍⠊⠞⠑⠑⠀⠙⠑⠗⠀⠙⠣⠞⠱⠤ ⠎⠏⠗⠁⠹⠊⠛⠑⠝⠀⠇⠜⠝⠙⠑⠗⠀⠓⠜⠇⠞⠀⠡⠋⠀⠎⠩⠝⠑⠗⠀⠺⠑⠃⠤ ⠎⠩⠞⠑⠀⠶⠠⠨⠺⠺⠺⠄⠃⠎⠅⠙⠇⠄⠕⠗⠛⠠⠄⠶⠀⠩⠝⠑⠀⠥⠝⠞⠑⠗⠤ ⠎⠩⠞⠑⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠋⠳⠗ ⠙⠁⠎⠀⠓⠑⠗⠥⠝⠞⠑⠗⠇⠁⠙⠑⠝⠀⠧⠕⠝⠀⠙⠕⠅⠥⠍⠑⠝⠞⠑⠝⠀⠥⠝⠙ ⠙⠁⠎⠀⠎⠁⠍⠍⠑⠇⠝⠀⠧⠕⠝⠀⠃⠩⠎⠏⠬⠇⠑⠝⠀⠃⠑⠗⠩⠞⠄⠀⠊⠝⠤ ⠞⠑⠗⠑⠎⠎⠬⠗⠞⠑⠀⠺⠑⠗⠙⠑⠝⠀⠩⠝⠛⠑⠇⠁⠙⠑⠝⠂⠀⠵⠥⠗⠀⠑⠗⠤ ⠺⠩⠞⠑⠗⠥⠝⠛⠀⠙⠑⠗⠀⠃⠩⠎⠏⠬⠇⠎⠁⠍⠍⠇⠥⠝⠛⠀⠃⠩⠵⠥⠞⠗⠁⠤ ⠛⠑⠝⠄ ⠨⠇⠁⠨⠞⠑⠘⠭ ⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠁⠇⠎⠀⠍⠪⠛⠇⠊⠹⠅⠩⠞⠀⠙⠑⠎⠀⠧⠑⠗⠛⠇⠩⠹⠎⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠍⠊⠞⠀⠩⠝⠑⠗⠀⠵⠺⠩⠞⠑⠝⠀⠙⠁⠗⠾⠑⠇⠤ ⠇⠥⠝⠛⠀⠺⠥⠗⠙⠑⠀⠋⠳⠗⠀⠞⠁⠾⠇⠑⠎⠑⠝⠙⠑⠂⠀⠙⠬⠀⠝⠊⠹⠞ ⠡⠋⠀⠙⠬⠀⠧⠊⠎⠥⠑⠇⠇⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠵⠥⠗⠳⠉⠅⠛⠗⠩⠤ ⠋⠑⠝⠀⠅⠪⠝⠝⠑⠝⠂⠀⠩⠝⠑⠀⠨⠇⠁⠨⠞⠑⠘⠭⠤⠱⠗⠩⠃⠺⠩⠎⠑ ⠛⠑⠺⠜⠓⠇⠞⠄ ⠀⠀⠀⠀⠀⠀⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠒⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁ ⠀⠀⠑⠎⠀⠅⠁⠝⠝⠀⠝⠊⠹⠞⠀⠁⠝⠛⠑⠝⠕⠍⠍⠑⠝⠀⠺⠑⠗⠙⠑⠝⠂ ⠙⠁⠎⠎⠀⠁⠇⠇⠑⠀⠞⠁⠾⠇⠑⠎⠑⠝⠙⠑⠝⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠅⠑⠝⠤ ⠝⠑⠝⠄⠀⠥⠝⠙⠀⠙⠑⠝⠝⠕⠹⠀⠓⠁⠞⠀⠎⠊⠹⠀⠛⠑⠵⠩⠛⠞⠂⠀⠙⠁⠎⠎ ⠱⠕⠝⠀⠍⠊⠞⠀⠺⠑⠝⠊⠛⠑⠝⠀⠨⠇⠁⠨⠞⠑⠘⠭⠤⠅⠑⠝⠝⠞⠝⠊⠎⠎⠑⠝ ⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇⠀⠋⠑⠾⠛⠑⠾⠑⠇⠇⠞⠀⠺⠑⠗⠙⠑⠝⠀⠅⠁⠝⠝⠂ ⠕⠃⠀⠩⠝⠀⠵⠩⠹⠑⠝⠀⠝⠕⠹⠀⠊⠝⠀⠩⠝⠑⠍⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝ ⠑⠝⠞⠓⠁⠇⠞⠑⠝⠀⠊⠾⠀⠕⠙⠑⠗⠀⠝⠊⠹⠞⠄⠀⠥⠝⠙⠀⠛⠑⠗⠁⠙⠑ ⠎⠕⠇⠹⠑⠀⠥⠝⠛⠑⠺⠊⠎⠎⠓⠩⠞⠑⠝⠀⠛⠊⠇⠞⠀⠑⠎⠀⠍⠪⠛⠇⠊⠹⠾ ⠵⠥⠀⠍⠊⠝⠊⠍⠬⠗⠑⠝⠂⠀⠺⠑⠝⠝⠀⠙⠬⠀⠃⠩⠎⠏⠬⠇⠑⠀⠾⠥⠙⠬⠗⠞ ⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠙⠑⠗⠀⠩⠝⠙⠣⠞⠊⠛⠅⠩⠞⠀⠓⠁⠇⠃⠑⠗⠀⠃⠑⠾⠑⠓⠞⠀⠙⠬ ⠨⠇⠁⠨⠞⠑⠘⠭⠤⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠡⠎⠀⠕⠗⠊⠛⠊⠝⠁⠇⠤ ⠨⠇⠁⠨⠞⠑⠘⠭⠀⠥⠝⠙⠀⠝⠊⠹⠞⠀⠡⠎⠀⠩⠝⠑⠗⠀⠙⠑⠗⠀⠧⠑⠗⠩⠝⠤ ⠋⠁⠹⠞⠑⠝⠀⠧⠁⠗⠊⠁⠝⠞⠑⠝⠂⠀⠙⠬⠀⠵⠥⠝⠑⠓⠍⠑⠝⠙⠀⠁⠇⠎ ⠩⠝⠑⠀⠁⠗⠞⠀⠃⠇⠊⠝⠙⠑⠝⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠁⠍ ⠉⠕⠍⠏⠥⠞⠑⠗⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠡⠋⠀⠙⠑⠗ ⠁⠝⠙⠑⠗⠑⠝⠀⠎⠩⠞⠑⠀⠺⠥⠗⠙⠑⠀⠅⠩⠝⠀⠛⠗⠕⠮⠑⠗⠀⠺⠑⠗⠞ ⠙⠁⠗⠡⠋⠀⠛⠑⠇⠑⠛⠞⠂⠀⠎⠬⠀⠎⠕⠀⠵⠥⠀⠱⠗⠩⠃⠑⠝⠂⠀⠙⠁⠎⠎ ⠩⠝⠀⠨⠇⠁⠨⠞⠑⠘⠭⠤⠉⠕⠍⠏⠊⠇⠑⠗⠀⠙⠁⠗⠡⠎⠀⠜⠎⠞⠓⠑⠞⠊⠱ ⠩⠝⠺⠁⠝⠙⠋⠗⠩⠑⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠑⠗⠾⠑⠇⠇⠑⠝⠀⠅⠪⠝⠝⠤ ⠞⠑⠄ ⠀⠀⠥⠍⠀⠙⠁⠎⠀⠇⠑⠎⠑⠝⠀⠙⠑⠗⠀⠨⠇⠁⠨⠞⠑⠘⠭⠤⠡⠎⠙⠗⠳⠉⠅⠑ ⠵⠥⠀⠑⠗⠇⠩⠹⠞⠑⠗⠝⠂⠀⠺⠥⠗⠙⠑⠀⠋⠳⠗⠀⠙⠬⠎⠑⠀⠼⠓⠤ ⠏⠥⠝⠅⠞⠑⠤⠃⠗⠁⠊⠇⠇⠑⠀⠛⠑⠺⠜⠓⠇⠞⠄⠀⠵⠥⠍⠀⠱⠝⠑⠇⠇⠑⠝ ⠝⠁⠹⠱⠇⠁⠛⠑⠝⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠑⠗⠀⠨⠇⠁⠨⠞⠑⠘⠭⠤⠱⠇⠳⠎⠤ ⠎⠑⠇⠺⠪⠗⠞⠑⠗⠀⠺⠊⠗⠙⠀⠩⠝⠑⠀⠡⠋⠇⠊⠾⠥⠝⠛⠀⠑⠇⠑⠅⠞⠗⠕⠤ ⠝⠊⠱⠀⠡⠋⠀⠠⠨⠺⠺⠺⠄⠃⠎⠅⠙⠇⠄⠕⠗⠛⠀⠁⠝⠛⠑⠃⠕⠞⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠒⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃ ⠙⠬⠎⠑⠎⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠀⠎⠕⠺⠬⠀⠙⠬⠀⠡⠋⠇⠊⠾⠥⠝⠛⠀⠩⠛⠤ ⠝⠑⠝⠀⠎⠊⠹⠀⠝⠊⠹⠞⠀⠋⠳⠗⠀⠙⠁⠎⠀⠑⠗⠇⠑⠗⠝⠑⠝⠀⠧⠕⠝ ⠨⠇⠁⠨⠞⠑⠘⠭⠄ ⠀⠀⠀⠀⠀⠀⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠒⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉ ⠀⠀⠀⠀⠀⠀⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠒⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙ ⠼⠁⠀⠛⠗⠥⠝⠙⠇⠑⠛⠑⠝⠙⠑⠀⠞⠑⠹⠝⠊⠅⠑⠝⠀⠵⠥⠗ ⠀⠀⠀⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠧⠕⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠼⠁⠄⠁⠀⠺⠑⠹⠎⠑⠇⠀⠵⠺⠊⠱⠑⠝⠀⠞⠑⠭⠞⠤⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠐⠂⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠿⠠⠄⠀⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠿⠠⠄⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞ ⠿⠠⠄⠀⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞ ⠀⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠥⠝⠙⠀⠙⠑⠗⠑⠝⠀⠅⠕⠍⠃⠊⠝⠁⠞⠊⠕⠤ ⠝⠑⠝⠀⠛⠑⠃⠑⠝⠀⠵⠥⠍⠀⠞⠩⠇⠀⠥⠝⠞⠑⠗⠱⠬⠙⠇⠊⠹⠑⠀⠎⠽⠍⠤ ⠃⠕⠇⠑⠀⠊⠝⠀⠙⠑⠗⠀⠞⠑⠭⠞⠤⠀⠥⠝⠙⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠅⠱⠗⠊⠋⠞⠀⠺⠬⠙⠑⠗⠄⠀⠙⠬⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠙⠑⠗ ⠳⠃⠑⠗⠛⠜⠝⠛⠑⠀⠵⠺⠊⠱⠑⠝⠀⠙⠑⠝⠀⠃⠩⠙⠑⠝⠀⠱⠗⠊⠋⠞⠑⠝ ⠊⠾⠀⠙⠁⠓⠑⠗⠀⠧⠕⠝⠀⠛⠗⠕⠮⠑⠗⠀⠃⠑⠙⠣⠞⠥⠝⠛⠄ ⠀⠀⠙⠗⠩⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠀⠞⠑⠹⠝⠊⠅⠑⠝⠀⠾⠑⠓⠑⠝⠀⠓⠬⠗⠤ ⠋⠳⠗⠀⠵⠥⠗⠀⠧⠑⠗⠋⠳⠛⠥⠝⠛⠒ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠤⠼⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑ ⠠⠤⠀⠇⠁⠽⠕⠥⠞⠞⠑⠹⠝⠊⠅ ⠠⠤⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠞⠑⠹⠝⠊⠅ ⠠⠤⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅ ⠀⠀⠙⠬⠀⠺⠁⠓⠇⠀⠙⠑⠗⠀⠞⠑⠹⠝⠊⠅⠀⠊⠾⠀⠅⠕⠝⠞⠑⠭⠞⠁⠃⠤ ⠓⠜⠝⠛⠊⠛⠄ ⠼⠁⠄⠁⠄⠁⠀⠇⠁⠽⠕⠥⠞ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠊⠝⠀⠙⠕⠅⠥⠍⠑⠝⠞⠑⠝⠀⠍⠊⠞⠀⠛⠗⠕⠮⠑⠍⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠱⠑⠍⠀⠁⠝⠞⠩⠇⠀⠗⠑⠹⠝⠑⠝⠀⠇⠑⠎⠑⠝⠙⠑⠀⠍⠊⠞⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠄⠀⠵⠥⠗⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠙⠑⠎ ⠺⠑⠹⠎⠑⠇⠎⠀⠧⠕⠝⠀⠙⠑⠗⠀⠞⠑⠭⠞⠤⠀⠊⠝⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠅⠱⠗⠊⠋⠞⠀⠛⠑⠝⠳⠛⠞⠀⠑⠎⠀⠙⠁⠓⠑⠗⠀⠕⠋⠞⠀⠱⠕⠝⠂ ⠵⠩⠇⠑⠝⠀⠍⠊⠞⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠍⠀⠊⠝⠓⠁⠇⠞⠀⠍⠊⠞ ⠓⠊⠇⠋⠑⠀⠙⠑⠎⠀⠇⠁⠽⠕⠥⠞⠎⠀⠧⠕⠍⠀⠳⠃⠗⠊⠛⠑⠝⠀⠋⠇⠬⠮⠤ ⠞⠑⠭⠞⠀⠁⠃⠵⠥⠓⠑⠃⠑⠝⠄ ⠀⠀⠩⠝⠑⠀⠎⠑⠓⠗⠀⠓⠌⠋⠊⠛⠀⠛⠑⠝⠥⠞⠵⠞⠑⠀⠛⠑⠾⠁⠇⠤ ⠞⠥⠝⠛⠎⠍⠪⠛⠇⠊⠹⠅⠩⠞⠀⠵⠥⠗⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝ ⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠵⠩⠇⠑⠝⠀⠎⠊⠝⠙⠀⠩⠝⠤⠀⠥⠝⠙ ⠡⠎⠗⠳⠉⠅⠥⠝⠛⠑⠝⠄⠀⠙⠁⠃⠩⠀⠺⠑⠗⠙⠑⠝⠀⠵⠩⠇⠑⠝⠀⠥⠍ ⠩⠝⠑⠀⠁⠝⠵⠁⠓⠇⠀⠧⠕⠝⠀⠋⠕⠗⠍⠑⠝⠀⠃⠑⠵⠳⠛⠇⠊⠹⠀⠙⠑⠗ ⠧⠕⠗⠡⠎⠛⠑⠓⠑⠝⠙⠑⠝⠀⠞⠑⠭⠞⠥⠍⠛⠑⠃⠥⠝⠛⠀⠩⠝⠛⠑⠤ ⠗⠳⠉⠅⠞⠄⠀⠙⠑⠗⠀⠺⠑⠹⠎⠑⠇⠀⠵⠥⠗⠳⠉⠅⠀⠵⠥⠗⠀⠞⠑⠭⠞⠤ ⠱⠗⠊⠋⠞⠀⠑⠗⠋⠕⠇⠛⠞⠀⠙⠥⠗⠹⠀⠙⠑⠝⠀⠃⠑⠛⠊⠝⠝⠀⠩⠝⠑⠗ ⠝⠣⠑⠝⠀⠵⠩⠇⠑⠀⠊⠍⠀⠞⠑⠭⠞⠇⠁⠽⠕⠥⠞⠄⠀⠺⠑⠗⠙⠑⠝⠀⠋⠳⠗ ⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠏⠁⠎⠎⠁⠛⠑⠀⠍⠑⠓⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠤⠼⠁⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋ ⠃⠑⠝⠪⠞⠊⠛⠞⠂⠀⠊⠾⠀⠋⠕⠇⠛⠑⠝⠙⠑⠎⠀⠵⠥⠀⠃⠑⠁⠹⠞⠑⠝⠒ ⠠⠤⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠏⠁⠎⠎⠁⠛⠑⠀⠍⠥⠎⠎⠀⠎⠊⠹ ⠀⠀⠀⠧⠕⠝⠀⠙⠑⠝⠀⠥⠍⠛⠑⠃⠑⠝⠙⠑⠝⠀⠞⠑⠭⠞⠏⠁⠎⠎⠁⠛⠑⠝ ⠀⠀⠀⠙⠣⠞⠇⠊⠹⠀⠁⠃⠓⠑⠃⠑⠝⠄ ⠠⠤⠀⠙⠬⠀⠑⠗⠾⠑⠀⠥⠝⠙⠀⠙⠬⠀⠋⠕⠗⠞⠎⠑⠞⠵⠥⠝⠛⠎⠵⠩⠇⠑⠝ ⠀⠀⠀⠎⠊⠝⠙⠀⠃⠑⠵⠳⠛⠇⠊⠹⠀⠊⠓⠗⠑⠗⠀⠩⠝⠗⠳⠉⠅⠥⠝⠛ ⠀⠀⠀⠥⠝⠞⠑⠗⠱⠬⠙⠇⠊⠹⠀⠵⠥⠀⠛⠑⠾⠁⠇⠞⠑⠝⠄ ⠀⠀⠺⠩⠞⠑⠗⠑⠀⠛⠑⠾⠁⠇⠞⠥⠝⠛⠎⠋⠕⠗⠍⠑⠝⠀⠎⠊⠝⠙⠀⠵⠥⠍ ⠃⠩⠎⠏⠬⠇⠀⠗⠁⠝⠙⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠶⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇ ⠼⠁⠄⠁⠄⠁⠀⠘⠃⠼⠚⠃⠠⠶⠀⠕⠙⠑⠗⠀⠞⠁⠃⠑⠇⠇⠑⠝⠎⠏⠁⠇⠞⠑⠝ ⠶⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠑⠀⠼⠁⠄⠁⠄⠁⠀⠘⠃⠼⠚⠉⠀⠥⠝⠙ ⠼⠁⠄⠁⠄⠁⠀⠘⠃⠼⠚⠙⠠⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠙⠑⠗⠀⠥⠍⠗⠑⠹⠝⠥⠝⠛⠎⠋⠁⠅⠞⠕⠗⠀⠧⠕⠝⠀⠙⠑⠗⠀⠩⠝⠓⠩⠞ ⠑⠇⠑⠅⠞⠗⠕⠝⠧⠕⠇⠞⠀⠸⠠⠑⠘⠧⠀⠊⠝⠀⠚⠕⠥⠇⠑⠀⠸⠘⠚⠀⠊⠾⠒ ⠀⠀⠀⠼⠁⠸⠑⠘⠧⠀⠶⠼⠁⠸⠘⠧⠄⠑⠠ ⠀⠀⠀⠀⠀⠶⠼⠁⠸⠘⠧⠄⠼⠁⠂⠋⠄⠼⠁⠚⠌⠤⠂⠔⠸⠘⠉⠠ ⠀⠀⠀⠀⠀⠶⠼⠁⠂⠋⠄⠼⠁⠚⠌⠤⠂⠔⠸⠘⠚ Der Umrechnungsfaktor von der Einheit Elektronvolt eV in Joule J ist: \[1 \text{eV} =1 \text{V} \cdot \text{e} =1 \text{V} \cdot 1,6 \cdot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠛ 10^{-19} \text{C} =1,6 \cdot 10^{-19} \text{J}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠙⠑⠗⠀⠁⠝⠋⠁⠝⠛⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠱⠗⠊⠋⠞⠀⠺⠊⠗⠙⠀⠵⠥⠎⠜⠞⠵⠇⠊⠹⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠍⠀⠊⠝ ⠙⠑⠗⠀⠇⠊⠝⠅⠑⠝⠀⠗⠁⠝⠙⠎⠏⠁⠇⠞⠑⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠄⠶ ⠀⠀⠀⠀⠙⠑⠗⠀⠥⠍⠗⠑⠹⠝⠥⠝⠛⠎⠋⠁⠅⠞⠕⠗⠀⠧⠕⠝⠀⠙⠑⠗ ⠀⠀⠩⠝⠓⠩⠞⠀⠑⠇⠑⠅⠞⠗⠕⠝⠧⠕⠇⠞⠀⠸⠠⠑⠘⠧⠀⠊⠝ ⠀⠀⠚⠕⠥⠇⠑⠀⠸⠘⠚⠀⠊⠾⠒ ⠍⠀⠀⠀⠀⠼⠁⠸⠑⠘⠧⠀⠶⠼⠁⠸⠘⠧⠄⠑⠠ ⠀⠀⠀⠀⠀⠀⠀⠶⠼⠁⠸⠘⠧⠄⠼⠁⠂⠋⠄⠼⠁⠚⠌⠤⠂⠔⠸⠘⠉⠠ ⠀⠀⠀⠀⠀⠀⠀⠶⠼⠁⠂⠋⠄⠼⠁⠚⠌⠤⠂⠔⠸⠘⠚ Der Umrechnungsfaktor von der Einheit Elektronvolt eV in Joule J ist: \[1 \text{eV} =1 \text{V} \cdot \text{e} =1 \text{V} \cdot 1,6 \cdot 10^{-19} \text{C} =1,6 \cdot 10^{-19} \text{J}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠁⠀⠘⠃⠼⠚⠉ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠊⠝⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠺⠊⠗⠙⠀⠡⠋⠀⠙⠬⠀⠞⠁⠤ ⠃⠑⠇⠇⠁⠗⠊⠱⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠝⠥⠗⠀⠗⠥⠙⠊⠍⠑⠝⠞⠜⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠓ ⠓⠊⠝⠛⠑⠺⠬⠎⠑⠝⠄⠶ ⠎⠁⠞⠵⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠋⠕⠗⠍⠑⠇ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠀⠀⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠙⠬⠀⠍⠥⠇⠞⠊⠏⠇⠊⠅⠁⠞⠊⠕⠝⠀⠀⠁⠄⠃⠀⠶⠃⠄⠁ ⠀⠀⠊⠾⠀⠅⠕⠍⠍⠥⠞⠁⠞⠊⠧⠄ ⠙⠬⠀⠍⠥⠇⠞⠊⠏⠇⠊⠅⠁⠞⠊⠕⠝⠀⠀⠣⠁⠄⠃⠜⠄⠉⠠ ⠀⠀⠊⠾⠀⠁⠎⠎⠕⠵⠊⠁⠞⠊⠧⠄⠀⠀⠀⠀⠀⠶⠁⠄⠣⠃⠄⠉⠜ ⠙⠬⠀⠼⠁⠀⠧⠑⠗⠓⠜⠇⠞⠀⠎⠊⠹⠀⠀⠁⠄⠼⠁⠀⠶⠁ ⠀⠀⠃⠑⠵⠳⠛⠇⠊⠹⠀⠙⠑⠗ ⠀⠀⠍⠥⠇⠞⠊⠏⠇⠊⠅⠁⠞⠊⠕⠝ ⠀⠀⠝⠣⠞⠗⠁⠇⠄ \[\text{Satz} & \text{Formel} \\ \text{Die Multiplikation ist kommutativ.} & a \cdot b =b \cdot a \\ \text{Die Multiplikation ist assoziativ.} & (a \cdot b) \cdot c =a \cdot (b \cdot c) \\ \text{Die 1 verhält sich bezüglich der Multiplikation neutral.} & a \cdot 1 '$=A"\'.'= ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠊ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠁⠀⠘⠃⠼⠚⠙ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠊⠝⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠺⠊⠗⠙⠀⠡⠋⠀⠙⠬⠀⠞⠁⠤ ⠃⠑⠇⠇⠁⠗⠊⠱⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠝⠥⠗⠀⠗⠥⠙⠊⠍⠑⠝⠞⠜⠗ ⠓⠊⠝⠛⠑⠺⠬⠎⠑⠝⠄⠶ ⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠧⠬⠗⠑⠉⠅⠑⠒ ⠃⠑⠵⠩⠹⠝⠥⠝⠛⠀⠀⠥⠍⠋⠁⠝⠛⠀⠀⠀⠀⠀⠀⠋⠇⠜⠹⠑⠝⠊⠝⠓⠁⠇⠞ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠀⠀⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠀⠀⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠧⠬⠗⠑⠉⠅⠀⠀⠀⠀⠀⠁⠀⠖⠃⠀⠖⠉⠀⠖⠙⠀⠀⠆⠙⠡⠂⠳⠼⠃⠰⠈ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⠓⠡⠂⠀⠖⠓⠡⠆⠜ ⠞⠗⠁⠏⠑⠵⠀⠀⠀⠀⠀⠁⠀⠖⠃⠀⠖⠉⠀⠖⠙⠀⠀⠍⠄⠓⠡⠁ ⠙⠗⠁⠹⠑⠝⠤⠀⠀⠀⠀⠼⠃⠠⠁⠀⠖⠼⠃⠠⠃⠀⠀⠼⠁⠆⠄⠙⠡⠂⠙⠡⠆ ⠀⠀⠧⠬⠗⠑⠉⠅ ⠏⠁⠗⠁⠇⠇⠑⠤⠀⠀⠀⠼⠃⠠⠁⠀⠖⠼⠃⠠⠃⠀⠀⠁⠄⠓⠡⠁ ⠀⠀⠇⠕⠛⠗⠁⠍⠍ ⠗⠓⠕⠍⠃⠥⠎⠀⠀⠀⠀⠼⠙⠠⠁⠀⠄⠄⠄⠄⠄⠀⠀⠼⠁⠆⠄⠙⠡⠂⠙⠡⠆ ⠟⠥⠁⠙⠗⠁⠞⠀⠀⠀⠀⠼⠙⠠⠁⠀⠄⠄⠄⠄⠄⠀⠀⠁⠌⠆ \[\text{Spezielle Vierecke} \\ \text{Bezeichnung} & \text{Umfang} & \text{Flächeninhalt} \\ \text{Viereck} & a +b +c +d & \frac{d_{1}}{2}(h_{1} +h_{2}) \\ \text{Trapez} & a +b +c +d & m \cdot h_{a} \\ \text{Drachenviereck} & 2a +2b & ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠚ \frac{1}{2}d_{1}d_{2} \\ \text{Parallelogramm} & 2a +2b & a \cdot h_{a} \\ \text{Rhombus} & 4a & \frac{1}{2}d_{1}d_{2} \\ \text{Quadrat} & 4a & a^{2}\] ⠼⠁⠄⠁⠄⠃⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠋⠳⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠐⠂⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠿⠠⠄⠀⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠀⠀⠁⠍⠀⠩⠝⠙⠣⠞⠊⠛⠾⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠙⠬⠀⠳⠃⠑⠗⠛⠜⠝⠛⠑ ⠧⠕⠝⠀⠙⠑⠗⠀⠞⠑⠭⠞⠤⠀⠵⠥⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠥⠝⠙⠀⠵⠥⠗⠳⠉⠅⠀⠍⠊⠞⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠤ ⠵⠩⠹⠑⠝⠀⠍⠁⠗⠅⠬⠗⠞⠄ ⠀⠀⠙⠁⠎⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠾⠑⠓⠞⠀⠥⠝⠍⠊⠞⠤ ⠞⠑⠇⠃⠁⠗⠀⠧⠕⠗⠀⠙⠑⠍⠀⠑⠗⠾⠑⠝⠀⠵⠩⠹⠑⠝⠀⠙⠑⠗⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠄⠀⠡⠮⠑⠗⠀⠁⠍⠀⠵⠩⠇⠑⠝⠁⠝⠋⠁⠝⠛ ⠛⠑⠓⠞⠀⠊⠓⠍⠀⠳⠃⠇⠊⠹⠑⠗⠺⠩⠎⠑⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠧⠕⠗⠁⠝⠄⠀⠑⠎⠀⠾⠑⠓⠞⠀⠚⠑⠙⠕⠹⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗ ⠓⠊⠝⠞⠑⠗⠀⠩⠝⠑⠗⠀⠪⠋⠋⠝⠑⠝⠙⠑⠝⠀⠞⠑⠭⠞⠅⠇⠁⠍⠍⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠁⠤⠼⠁⠄⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠁ ⠕⠙⠑⠗⠀⠩⠝⠑⠍⠀⠁⠝⠙⠑⠗⠑⠝⠀⠎⠽⠍⠃⠕⠇⠂⠀⠡⠋⠀⠙⠁⠎⠀⠡⠹ ⠞⠑⠭⠞⠀⠕⠓⠝⠑⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠋⠕⠇⠛⠑⠝⠀⠅⠪⠝⠝⠤ ⠞⠑⠄ ⠀⠀⠙⠁⠎⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠾⠑⠓⠞⠀⠥⠝⠍⠊⠞⠤ ⠞⠑⠇⠃⠁⠗⠀⠓⠊⠝⠞⠑⠗⠀⠙⠑⠍⠀⠇⠑⠞⠵⠞⠑⠝⠀⠵⠩⠹⠑⠝⠀⠙⠑⠗ ⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠏⠁⠎⠎⠁⠛⠑⠄⠀⠙⠁⠗⠡⠋⠀⠋⠕⠇⠛⠞ ⠩⠝⠀⠇⠑⠑⠗⠤⠀⠕⠙⠑⠗⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠄ ⠀⠀⠍⠊⠞⠀⠙⠑⠍⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠩⠝⠛⠑⠇⠩⠤ ⠞⠑⠞⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠏⠁⠎⠎⠁⠛⠑⠝⠀⠎⠊⠝⠙ ⠵⠺⠊⠝⠛⠑⠝⠙⠀⠍⠊⠞⠀⠙⠑⠍⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠁⠃⠵⠥⠱⠇⠬⠮⠑⠝⠄⠀⠎⠬⠀⠙⠳⠗⠋⠑⠝⠀⠝⠥⠗⠀⠧⠕⠝⠀⠅⠥⠗⠤ ⠵⠑⠝⠂⠀⠍⠊⠞⠀⠙⠑⠗⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅ ⠁⠃⠛⠑⠛⠗⠑⠝⠵⠞⠑⠝⠀⠞⠑⠭⠞⠏⠁⠎⠎⠁⠛⠑⠝⠀⠥⠝⠞⠑⠗⠃⠗⠕⠤ ⠹⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠁⠍⠀⠑⠝⠙⠑⠀⠩⠝⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠤ ⠱⠑⠝⠀⠏⠁⠎⠎⠁⠛⠑⠀⠛⠑⠓⠪⠗⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇ ⠝⠊⠹⠞⠀⠵⠥⠍⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅⠀⠎⠑⠇⠃⠾⠄ ⠙⠑⠗⠀⠳⠃⠑⠗⠎⠊⠹⠞⠇⠊⠹⠅⠩⠞⠀⠓⠁⠇⠃⠑⠗⠀⠺⠑⠗⠙⠑⠝⠀⠎⠬ ⠝⠁⠹⠀⠙⠑⠍⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠛⠑⠱⠗⠬⠃⠑⠝⠂ ⠺⠕⠀⠎⠬⠀⠙⠑⠝⠀⠧⠕⠗⠁⠝⠛⠑⠾⠑⠇⠇⠞⠑⠝⠀⠏⠥⠝⠅⠞⠀⠼⠋ ⠝⠊⠹⠞⠀⠃⠑⠝⠪⠞⠊⠛⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠉⠄⠛⠀⠎⠁⠞⠵⠵⠩⠤ ⠹⠑⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠳⠃⠑⠗⠱⠗⠊⠋⠞⠀⠡⠎⠀⠩⠝⠑⠍⠀⠇⠑⠓⠗⠃⠥⠹⠄⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠃ ⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠀⠙⠬⠀⠵⠑⠗⠇⠑⠛⠥⠝⠛⠀⠧⠕⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⠂⠁⠭⠌⠆⠀⠖⠃⠭⠀⠖⠉⠠⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠀⠇⠊⠝⠑⠁⠗⠋⠁⠅⠞⠕⠗⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠕⠙⠑⠗⠀⠊⠝⠀⠅⠥⠗⠵⠱⠗⠊⠋⠞⠒ ⠀⠀⠀⠀⠀⠀⠼⠁⠙⠀⠬⠀⠵⠻⠇⠑⠛⠥⠀⠧⠀⠐⠂⠁⠭⠌⠆⠠ ⠀⠀⠀⠀⠀⠀⠀⠖⠃⠭⠀⠖⠉⠠⠄⠀⠔⠀⠇⠔⠑⠴⠋⠁⠅⠞⠢⠉ ⠀⠀⠀⠀⠀⠀⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ 14 Die Zerlegung von $ax^{2} +bx +c$ in Linearfaktoren ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠁⠇⠇⠑⠀⠅⠑⠝⠝⠑⠝⠀⠙⠬⠀⠋⠕⠗⠍⠑⠇⠀⠐⠂⠑⠀⠶⠍⠉⠌⠆⠠⠄⠂ ⠁⠃⠑⠗⠀⠝⠥⠗⠀⠺⠑⠝⠊⠛⠑⠀⠧⠑⠗⠾⠑⠓⠑⠝⠀⠎⠬⠄ Alle kennen die Formel $e =mc^{2}$, aber nur wenige verstehen sie. ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠙⠬⠀⠝⠑⠺⠞⠕⠝⠱⠑⠀⠍⠑⠹⠁⠝⠊⠅⠀⠊⠾⠀⠃⠩⠀⠛⠑⠱⠺⠊⠝⠤ ⠙⠊⠛⠅⠩⠞⠑⠝⠀⠊⠍⠀⠃⠑⠗⠩⠹⠀⠙⠑⠗⠀⠇⠊⠹⠞⠛⠑⠱⠺⠊⠝⠙⠊⠛⠤ ⠅⠩⠞⠀⠶⠐⠂⠉⠀⠶⠼⠉⠄⠼⠁⠚⠌⠦⠸⠍⠳⠎⠠⠄⠶⠀⠝⠊⠹⠞⠀⠍⠑⠓⠗ ⠛⠳⠇⠞⠊⠛⠄ Die newtonsche Mechanik ist bei Geschwindigkeiten im Bereich der ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠉ Lichtgeschwindigkeit ($c =3 \cdot 10^{8} \frac{\text{m}}{\text{s}}$) nicht mehr gültig. ⠼⠁⠄⠁⠄⠉⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠋⠳⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠠⠄⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞ ⠿⠠⠄⠀⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠀⠏⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠛⠑⠀⠊⠝⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞ ⠀⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠊⠝⠝⠑⠗⠓⠁⠇⠃⠀⠩⠝⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠅⠱⠗⠊⠋⠞⠏⠁⠎⠎⠁⠛⠑⠀⠅⠁⠝⠝⠀⠑⠃⠑⠝⠋⠁⠇⠇⠎⠀⠍⠊⠞ ⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠤ ⠝⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠙⠁⠎⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠾⠑⠓⠞⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠧⠕⠗⠀⠙⠑⠍⠀⠑⠗⠾⠑⠝⠀⠞⠑⠭⠞⠤ ⠵⠩⠹⠑⠝⠀⠓⠊⠝⠞⠑⠗⠀⠩⠝⠑⠍⠀⠁⠝⠀⠙⠑⠗⠀⠛⠗⠑⠝⠵⠾⠑⠇⠇⠑ ⠧⠕⠗⠅⠕⠍⠍⠑⠝⠙⠑⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠄⠀⠙⠁⠎⠀⠁⠃⠅⠳⠝⠙⠊⠤ ⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠕⠇⠛⠞⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠡⠋⠀⠙⠁⠎ ⠇⠑⠞⠵⠞⠑⠀⠞⠑⠭⠞⠵⠩⠹⠑⠝⠄ ⠀⠀⠊⠝⠀⠩⠝⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠏⠁⠎⠎⠁⠛⠑⠀⠾⠑⠓⠞⠀⠙⠑⠗ ⠞⠑⠭⠞⠩⠝⠱⠥⠃⠀⠝⠕⠗⠍⠁⠇⠑⠗⠺⠩⠎⠑⠀⠊⠍⠀⠎⠑⠇⠃⠑⠝ ⠅⠳⠗⠵⠥⠝⠛⠎⠛⠗⠁⠙⠀⠶⠅⠥⠗⠵⠤⠂⠀⠧⠕⠇⠇⠤⠀⠕⠙⠑⠗⠀⠃⠁⠤ ⠎⠊⠎⠱⠗⠊⠋⠞⠶⠀⠺⠬⠀⠙⠑⠗⠀⠳⠃⠗⠊⠛⠑⠀⠳⠃⠑⠗⠞⠗⠁⠛⠑⠝⠑ ⠋⠇⠬⠮⠞⠑⠭⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠃⠤⠼⠁⠄⠁⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠙ ⠀⠀⠙⠬⠎⠑⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠙⠳⠗⠋⠑⠝⠀⠡⠹⠀⠊⠝⠝⠑⠗⠓⠁⠇⠃⠀⠩⠝⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠱⠗⠊⠋⠞⠏⠁⠎⠎⠁⠛⠑⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠙⠬ ⠊⠓⠗⠑⠗⠎⠩⠞⠎⠀⠍⠊⠞⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠤ ⠵⠩⠹⠑⠝⠀⠁⠃⠛⠑⠛⠗⠑⠝⠵⠞⠀⠊⠾⠄ ⠀⠀⠙⠁⠛⠑⠛⠑⠝⠀⠙⠳⠗⠋⠑⠝⠀⠊⠝⠀⠩⠝⠑⠍⠀⠍⠊⠞⠀⠁⠝⠅⠳⠝⠤ ⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠑⠝⠀⠞⠑⠭⠞⠩⠝⠤ ⠱⠥⠃⠀⠅⠩⠝⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠩⠝⠱⠳⠃⠑⠀⠑⠝⠞⠓⠁⠇⠤ ⠞⠑⠝⠀⠎⠩⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠉⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠘⠊⠡⠂⠀⠶⠼⠁⠚⠄⠘⠊⠡⠘⠃⠀⠠⠄⠶⠗⠊⠹⠞⠺⠑⠗⠞⠶⠠⠄⠠ ⠀⠀⠀⠀⠀⠶⠼⠁⠃⠚⠸⠰⠍⠘⠁ \[I_{1} =10 \cdot I_{B} \quad \text{(Richtwert)} =120 \text{\mu A}\] ⠼⠁⠄⠁⠄⠙⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠳⠃⠑⠗⠁⠇⠇⠀⠙⠕⠗⠞⠂⠀⠺⠕⠀⠩⠝⠀⠺⠑⠹⠎⠑⠇⠀⠵⠺⠊⠱⠑⠝ ⠞⠑⠭⠞⠤⠀⠥⠝⠙⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠑⠗⠺⠁⠗⠞⠑⠞ ⠺⠑⠗⠙⠑⠝⠀⠅⠁⠝⠝⠂⠀⠙⠳⠗⠋⠑⠝⠀⠎⠑⠓⠗⠀⠅⠥⠗⠵⠑⠀⠩⠝⠱⠳⠤ ⠃⠑⠀⠙⠑⠗⠀⠚⠑⠺⠩⠇⠎⠀⠁⠝⠙⠑⠗⠑⠝⠀⠱⠗⠊⠋⠞⠀⠍⠊⠞⠀⠙⠑⠗ ⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞ ⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠉⠤⠼⠁⠄⠁⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠑ ⠀⠀⠧⠕⠗⠀⠙⠑⠍⠀⠑⠗⠾⠑⠝⠀⠵⠩⠹⠑⠝⠀⠊⠍⠀⠁⠝⠙⠑⠗⠑⠝ ⠱⠗⠊⠋⠞⠎⠽⠾⠑⠍⠀⠾⠑⠓⠞⠀⠩⠝⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠄ ⠙⠑⠗⠀⠺⠑⠹⠎⠑⠇⠀⠵⠥⠗⠳⠉⠅⠀⠵⠥⠍⠀⠧⠕⠗⠓⠑⠗⠊⠛⠑⠝ ⠱⠗⠊⠋⠞⠎⠽⠾⠑⠍⠀⠺⠊⠗⠙⠀⠑⠗⠝⠣⠞⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠙⠕⠏⠤ ⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠁⠝⠛⠑⠵⠩⠛⠞⠄⠀⠙⠁⠎⠀⠙⠕⠏⠏⠑⠇⠤ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠍⠥⠎⠎⠀⠵⠺⠊⠱⠑⠝⠀⠵⠩⠹⠑⠝⠀⠾⠑⠓⠑⠝⠂ ⠙⠁⠗⠋⠀⠁⠇⠎⠕⠀⠝⠊⠹⠞⠀⠁⠍⠀⠁⠝⠋⠁⠝⠛⠀⠕⠙⠑⠗⠀⠁⠍⠀⠑⠝⠤ ⠙⠑⠀⠩⠝⠑⠗⠀⠵⠩⠇⠑⠀⠵⠥⠍⠀⠩⠝⠎⠁⠞⠵⠀⠅⠕⠍⠍⠑⠝⠄ ⠀⠀⠙⠁⠎⠀⠑⠝⠙⠑⠀⠩⠝⠑⠎⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠤ ⠵⠩⠹⠑⠝⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠑⠝⠀⠩⠝⠱⠥⠃⠎⠀⠍⠥⠎⠎⠀⠑⠃⠑⠝⠤ ⠋⠁⠇⠇⠎⠀⠙⠥⠗⠹⠀⠩⠝⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠛⠑⠤ ⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠝⠥⠗⠀⠺⠑⠝⠝⠀⠩⠝⠀⠩⠝⠱⠥⠃ ⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠁⠍⠀⠑⠝⠙⠑⠀⠩⠝⠑⠎⠀⠁⠃⠤ ⠎⠁⠞⠵⠑⠎⠀⠾⠑⠓⠞⠂⠀⠅⠁⠝⠝⠀⠡⠋⠀⠙⠬⠎⠑⠎⠀⠁⠃⠅⠳⠝⠙⠊⠤ ⠛⠑⠝⠙⠑⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠧⠑⠗⠵⠊⠹⠞⠑⠞⠀⠺⠑⠗⠤ ⠙⠑⠝⠂⠀⠙⠁⠀⠩⠝⠀⠝⠣⠑⠗⠀⠁⠃⠎⠁⠞⠵⠀⠙⠑⠝⠀⠙⠥⠗⠹⠀⠙⠬ ⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅⠀⠃⠑⠺⠊⠗⠅⠞⠑⠝ ⠱⠗⠊⠋⠞⠺⠑⠹⠎⠑⠇⠀⠕⠓⠝⠑⠓⠊⠝⠀⠡⠋⠓⠑⠃⠞⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇⠀⠛⠑⠓⠪⠗⠑⠝⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠁⠍ ⠱⠇⠥⠎⠎⠀⠩⠝⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠏⠁⠎⠎⠁⠛⠑⠀⠝⠊⠹⠞ ⠵⠥⠍⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅⠄⠀⠎⠬⠀⠙⠳⠗⠋⠑⠝ ⠙⠑⠝⠝⠕⠹⠀⠧⠕⠗⠀⠙⠑⠍⠀⠁⠝⠀⠙⠑⠗⠀⠛⠗⠑⠝⠵⠾⠑⠇⠇⠑⠀⠾⠑⠤ ⠓⠑⠝⠙⠑⠝⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠠⠤⠀⠺⠕⠀⠝⠪⠞⠊⠛ ⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠼⠋⠠⠤⠀⠛⠑⠱⠗⠬⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑ ⠦⠼⠉⠄⠛⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠴⠶⠄⠀⠋⠕⠇⠛⠞⠀⠩⠝⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠅⠡⠎⠙⠗⠥⠉⠅⠀⠙⠊⠗⠑⠅⠞⠀⠡⠋⠀⠩⠝⠀⠋⠳⠓⠗⠑⠝⠙⠑⠎ ⠊⠝⠞⠑⠗⠏⠥⠝⠅⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠶⠁⠝⠋⠳⠓⠗⠥⠝⠛⠎⠵⠩⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠋ ⠹⠑⠝⠂⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠶⠂⠀⠅⠁⠝⠝⠀⠙⠬⠀⠙⠕⠏⠤ ⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅⠀⠝⠊⠹⠞⠀⠁⠝⠛⠑⠺⠑⠝⠙⠑⠞ ⠺⠑⠗⠙⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠙⠀⠘⠃⠼⠚⠁ ⠀⠀⠙⠬⠀⠛⠇⠩⠹⠥⠝⠛⠀⠀⠭⠌⠆⠀⠶⠼⠁⠋⠀⠀⠊⠾ ⠝⠁⠹⠀⠠⠭⠀⠡⠋⠵⠥⠇⠪⠎⠑⠝⠄ Die Gleichung $x^{2} =16$ ist nach $x$ aufzulösen. ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠙⠀⠘⠃⠼⠚⠃ ⠀⠀⠃⠁⠎⠊⠎⠀⠠⠁⠀⠥⠝⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠀⠠⠝⠀⠩⠝⠑⠗ ⠏⠕⠞⠑⠝⠵⠀⠎⠊⠝⠙⠀⠋⠳⠗⠀⠀⠁⠀⠔⠶⠝⠀⠀⠊⠄⠀⠁⠇⠇⠛⠄ ⠝⠊⠹⠞⠀⠧⠑⠗⠞⠡⠱⠃⠁⠗⠒⠀⠀⠁⠌⠝⠀⠔⠶⠝⠌⠁⠀⠀⠶⠃⠩⠎⠏⠬⠇ ⠋⠳⠗⠀⠩⠝⠑⠀⠡⠎⠝⠁⠓⠍⠑⠒⠀⠐⠂⠼⠃⠌⠲⠀⠶⠼⠙⠌⠆⠠⠄⠶⠄ Basis $a$ und Exponent $n$ einer Potenz sind für $a \neq n$ i. allg. nicht vertauschbar: $a^{n} \neq n^{a}$ (Beispiel für eine Ausnahme: $2^{4} =4^{2}$). ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠙⠀⠘⠃⠼⠚⠉ ⠀⠀⠙⠁⠍⠊⠞⠀⠊⠾⠀⠀⠁⠌⠝⠀⠀⠋⠳⠗⠀⠁⠇⠇⠑⠀⠛⠁⠝⠵⠵⠁⠓⠤ ⠇⠊⠛⠑⠝⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠶⠐⠂⠝⠀⠯⠑⠘⠛⠠⠄⠶⠀⠙⠑⠋⠊⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠛ ⠝⠬⠗⠞⠂⠀⠁⠇⠇⠑⠗⠙⠊⠝⠛⠎⠀⠋⠳⠗⠀⠀⠝⠀⠪⠶⠼⠚⠀⠀⠍⠊⠞ ⠙⠑⠗⠀⠩⠝⠱⠗⠜⠝⠅⠥⠝⠛⠀⠀⠁⠀⠔⠶⠼⠚⠀⠀⠶⠙⠑⠝⠝ ⠋⠳⠗⠀⠀⠁⠀⠶⠼⠚⠀⠀⠺⠳⠗⠙⠑⠝⠀⠙⠬⠀⠙⠑⠋⠊⠝⠊⠞⠊⠕⠝⠑⠝ ⠋⠳⠗⠀⠀⠁⠌⠤⠝⠀⠀⠥⠝⠙⠀⠐⠂⠁⠌⠴⠠⠄⠠⠤⠀⠺⠑⠛⠑⠝ ⠐⠂⠁⠌⠴⠀⠶⠁⠌⠝⠈⠤⠝⠠⠄⠠⠤⠀⠡⠋⠀⠙⠊⠧⠊⠎⠊⠕⠝⠑⠝ ⠙⠥⠗⠹⠀⠝⠥⠇⠇⠀⠋⠳⠓⠗⠑⠝⠶⠄ Damit ist $a^{n}$ für alle ganzzahligen Exponenten ($n \in G$) definiert, allerdings für $n \leq 0$ mit der Einschränkung $a \neq 0$ (denn für $a =0$ würden die Definitionen für $a^{-n}$ und $a^{0}$ - wegen $a^{0} =a^{n -n}$ - auf Divisionen durch Null führen). ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠙⠀⠘⠃⠼⠚⠙ ⠀⠀⠥⠝⠞⠑⠗⠀⠀⠩⠁⠀⠣⠁⠀⠕⠶⠼⠚⠜⠀⠀⠧⠑⠗⠾⠑⠓⠑⠝ ⠺⠊⠗⠀⠄⠄⠄ Unter $\sqrt{a} \; (a \geq 0)$ verstehen wir ... ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠙⠀⠘⠃⠼⠚⠑ ⠀⠀⠁⠇⠇⠑⠀⠅⠑⠝⠝⠑⠝⠀⠚⠁⠀⠙⠬⠀⠋⠕⠗⠤ ⠍⠑⠇⠀⠀⠑⠀⠶⠍⠉⠌⠆⠠⠂⠀⠀⠁⠃⠑⠗⠀⠝⠥⠗⠀⠺⠑⠝⠊⠛⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠓ ⠧⠑⠗⠾⠑⠓⠑⠝⠀⠎⠬⠄ Alle kennen ja die Formel $e =mc^{2}$, aber nur wenige verstehen sie. ⠼⠁⠄⠁⠄⠑⠀⠓⠊⠝⠺⠩⠎⠑⠀⠵⠥⠍⠀⠩⠝⠎⠁⠞⠵⠀⠙⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠺⠑⠹⠎⠑⠇⠞⠑⠹⠝⠊⠅⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠋⠳⠗⠀⠇⠑⠎⠑⠝⠙⠑⠀⠍⠥⠎⠎⠀⠊⠍⠍⠑⠗⠀⠅⠇⠁⠗⠀⠑⠗⠤ ⠅⠑⠝⠝⠃⠁⠗⠀⠎⠩⠝⠂⠀⠕⠃⠀⠎⠬⠀⠛⠑⠗⠁⠙⠑⠀⠙⠬⠀⠞⠑⠭⠞⠤ ⠕⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠇⠑⠎⠑⠝⠄⠀⠋⠳⠗⠀⠙⠬ ⠺⠁⠓⠇⠀⠙⠑⠗⠀⠚⠑⠺⠩⠇⠎⠀⠛⠑⠩⠛⠝⠑⠞⠑⠝⠀⠞⠑⠹⠝⠊⠅ ⠛⠑⠇⠞⠑⠝⠀⠋⠕⠇⠛⠑⠝⠙⠑⠀⠳⠃⠑⠗⠇⠑⠛⠥⠝⠛⠑⠝⠀⠥⠝⠙ ⠏⠗⠊⠝⠵⠊⠏⠊⠑⠝⠒ ⠠⠤⠀⠙⠬⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠍⠁⠗⠤ ⠀⠀⠀⠅⠬⠗⠑⠝⠀⠙⠑⠝⠀⠱⠗⠊⠋⠞⠺⠑⠹⠎⠑⠇⠀⠩⠝⠙⠣⠞⠊⠛⠄ ⠠⠤⠀⠩⠝⠑⠀⠍⠊⠞⠀⠙⠑⠍⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠩⠝⠤ ⠀⠀⠀⠛⠑⠇⠩⠞⠑⠞⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠏⠁⠎⠎⠁⠛⠑ ⠀⠀⠀⠍⠥⠎⠎⠀⠍⠊⠞⠀⠙⠑⠍⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠀⠀⠀⠃⠑⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠠⠤⠀⠇⠁⠽⠕⠥⠞⠞⠑⠹⠝⠊⠅⠑⠝⠀⠛⠗⠑⠝⠵⠑⠝⠀⠑⠇⠑⠛⠁⠝⠞ ⠀⠀⠀⠥⠝⠙⠀⠅⠇⠁⠗⠀⠙⠑⠝⠀⠛⠑⠇⠞⠥⠝⠛⠎⠃⠑⠗⠩⠹⠀⠙⠑⠗ ⠀⠀⠀⠚⠑⠺⠩⠇⠊⠛⠑⠝⠀⠱⠗⠊⠋⠞⠀⠁⠃⠄ ⠠⠤⠀⠙⠬⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅⠀⠩⠛⠝⠑⠞ ⠀⠀⠀⠎⠊⠹⠀⠡⠎⠙⠗⠳⠉⠅⠇⠊⠹⠀⠝⠥⠗⠀⠋⠳⠗⠀⠎⠑⠓⠗⠀⠅⠥⠗⠵⠑ ⠀⠀⠀⠩⠝⠱⠳⠃⠑⠠⠤⠀⠍⠪⠛⠇⠊⠹⠾⠀⠕⠓⠝⠑⠀⠵⠩⠇⠑⠝⠥⠍⠃⠗⠳⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠙⠤⠼⠁⠄⠁⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠊ ⠀⠀⠀⠹⠑⠄ ⠠⠤⠀⠺⠑⠝⠝⠀⠩⠝⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠏⠁⠎⠎⠁⠛⠑⠀⠍⠊⠞ ⠀⠀⠀⠩⠝⠑⠍⠀⠁⠝⠋⠳⠓⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠩⠝⠑⠗ ⠀⠀⠀⠞⠑⠭⠞⠅⠇⠁⠍⠍⠑⠗⠀⠃⠑⠛⠊⠝⠝⠞⠂⠀⠙⠁⠗⠋⠀⠎⠬⠀⠝⠊⠹⠞ ⠀⠀⠀⠍⠊⠞⠀⠙⠑⠗⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅⠀⠁⠝⠤ ⠀⠀⠀⠛⠑⠅⠳⠝⠙⠊⠛⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠠⠤⠀⠊⠝⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇⠀⠛⠑⠓⠪⠗⠑⠝⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠁⠍ ⠀⠀⠀⠱⠇⠥⠎⠎⠀⠩⠝⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠏⠁⠎⠎⠁⠛⠑ ⠀⠀⠀⠝⠊⠹⠞⠀⠵⠥⠗⠀⠏⠁⠎⠎⠁⠛⠑⠀⠎⠑⠇⠃⠾⠄⠀⠎⠬⠀⠎⠊⠝⠙ ⠀⠀⠀⠙⠁⠓⠑⠗⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠗⠑⠹⠞⠎⠀⠧⠕⠍⠀⠁⠃⠤ ⠀⠀⠀⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠀⠿⠠⠄⠀⠀⠵⠥⠀⠎⠑⠞⠵⠑⠝⠄ ⠀⠀⠀⠺⠑⠝⠝⠀⠙⠬⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠙⠥⠗⠹⠀⠙⠕⠏⠏⠑⠇⠤ ⠀⠀⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠑⠗⠋⠕⠇⠛⠞⠂⠀⠺⠑⠗⠙⠑⠝⠀⠎⠬⠀⠚⠑⠤ ⠀⠀⠀⠙⠕⠹⠀⠧⠕⠗⠀⠙⠬⠎⠑⠝⠀⠶⠛⠑⠛⠑⠃⠑⠝⠑⠝⠋⠁⠇⠇⠎⠀⠍⠊⠞ ⠀⠀⠀⠏⠥⠝⠅⠞⠀⠼⠋⠠⠶⠀⠛⠑⠱⠗⠬⠃⠑⠝⠂⠀⠙⠁⠍⠊⠞⠀⠎⠬ ⠀⠀⠀⠝⠊⠹⠞⠀⠁⠇⠇⠩⠝⠀⠾⠑⠓⠑⠝⠄ ⠠⠤⠀⠩⠝⠀⠅⠥⠗⠵⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠡⠎⠙⠗⠥⠉⠅⠀⠁⠍ ⠀⠀⠀⠑⠝⠙⠑⠀⠩⠝⠑⠎⠀⠞⠑⠭⠞⠁⠃⠎⠁⠞⠵⠑⠎⠀⠅⠁⠝⠝⠀⠍⠊⠞ ⠀⠀⠀⠙⠑⠗⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠝⠊⠅⠀⠩⠝⠛⠑⠇⠩⠤ ⠀⠀⠀⠞⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠙⠁⠎⠀⠁⠃⠎⠁⠞⠵⠑⠝⠙⠑⠀⠅⠑⠝⠝⠤ ⠀⠀⠀⠵⠩⠹⠝⠑⠞⠀⠛⠇⠩⠹⠵⠩⠞⠊⠛⠀⠡⠹⠀⠙⠁⠎⠀⠑⠝⠙⠑⠀⠙⠑⠎ ⠀⠀⠀⠩⠝⠱⠥⠃⠑⠎⠄⠀⠁⠃⠱⠇⠬⠮⠑⠝⠙⠑⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝ ⠀⠀⠀⠺⠑⠗⠙⠑⠝⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠝⠁⠹⠀⠙⠑⠍⠀⠍⠁⠞⠓⠑⠤ ⠀⠀⠀⠍⠁⠞⠊⠱⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅⠀⠛⠑⠱⠗⠬⠃⠑⠝⠀⠥⠝⠙ ⠀⠀⠀⠛⠑⠛⠑⠃⠑⠝⠑⠝⠋⠁⠇⠇⠎⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠧⠕⠗⠁⠝⠤ ⠀⠀⠀⠛⠑⠾⠑⠇⠇⠞⠑⠝⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠧⠑⠗⠎⠑⠓⠑⠝⠄ ⠠⠤⠀⠳⠃⠇⠊⠹⠑⠗⠺⠩⠎⠑⠀⠺⠑⠗⠙⠑⠝⠀⠞⠑⠭⠞⠩⠝⠱⠳⠃⠑⠀⠊⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠚ ⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠏⠁⠎⠎⠁⠛⠑⠝⠀⠊⠍⠀⠎⠑⠇⠃⠑⠝ ⠀⠀⠀⠅⠳⠗⠵⠥⠝⠛⠎⠛⠗⠁⠙⠀⠺⠬⠀⠙⠑⠗⠀⠥⠍⠇⠬⠛⠑⠝⠙⠑ ⠀⠀⠀⠞⠑⠭⠞⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠠⠤⠀⠩⠝⠵⠑⠇⠝⠑⠀⠕⠙⠑⠗⠀⠺⠑⠝⠊⠛⠑⠀⠺⠪⠗⠞⠑⠗⠀⠊⠝⠀⠍⠁⠤ ⠀⠀⠀⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠏⠁⠎⠎⠁⠛⠑⠝⠀⠶⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇ ⠀⠀⠀⠦⠥⠝⠙⠴⠂⠀⠦⠙⠁⠓⠑⠗⠴⠂⠀⠦⠑⠎⠀⠛⠊⠇⠞⠴⠶⠀⠅⠪⠝⠝⠑⠝ ⠀⠀⠀⠊⠝⠀⠃⠁⠎⠊⠎⠱⠗⠊⠋⠞⠀⠶⠍⠊⠞⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛ ⠀⠀⠀⠙⠑⠗⠀⠛⠗⠕⠮⠱⠗⠩⠃⠥⠝⠛⠶⠀⠛⠑⠱⠗⠬⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠂ ⠀⠀⠀⠕⠓⠝⠑⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠵⠥⠀⠧⠑⠗⠤ ⠀⠀⠀⠇⠁⠎⠎⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠉⠄⠓⠀⠞⠑⠭⠞⠀⠊⠝⠀⠙⠑⠗ ⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠴⠶⠄⠀⠑⠎⠀⠊⠾⠀⠵⠺⠊⠱⠑⠝ ⠀⠀⠀⠙⠑⠍⠀⠧⠕⠗⠞⠩⠇⠓⠁⠋⠞⠑⠝⠀⠧⠑⠗⠵⠊⠹⠞⠀⠡⠋⠀⠙⠑⠝ ⠀⠀⠀⠱⠗⠊⠋⠞⠺⠑⠹⠎⠑⠇⠀⠥⠝⠙⠀⠩⠝⠑⠍⠀⠑⠧⠑⠝⠞⠥⠑⠇⠇ ⠀⠀⠀⠾⠪⠗⠑⠝⠙⠑⠝⠀⠾⠊⠇⠃⠗⠥⠹⠂⠀⠧⠕⠗⠀⠁⠇⠇⠑⠍⠀⠊⠝ ⠀⠀⠀⠅⠥⠗⠵⠱⠗⠊⠋⠞⠞⠑⠭⠞⠑⠝⠂⠀⠁⠃⠵⠥⠺⠜⠛⠑⠝⠄⠀⠧⠕⠗⠤ ⠀⠀⠀⠎⠊⠹⠞⠀⠊⠾⠀⠃⠩⠀⠥⠍⠇⠡⠞⠃⠥⠹⠾⠁⠃⠑⠝⠀⠥⠝⠙⠀⠮ ⠀⠀⠀⠛⠑⠃⠕⠞⠑⠝⠂⠀⠙⠬⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠀⠀⠀⠱⠗⠊⠋⠞⠀⠁⠇⠎⠀⠁⠝⠙⠑⠗⠑⠀⠵⠩⠹⠑⠝⠂⠀⠧⠕⠗⠀⠁⠇⠇⠑⠍ ⠀⠀⠀⠁⠇⠎⠀⠃⠗⠥⠹⠾⠗⠊⠹⠀⠥⠝⠙⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠤ ⠀⠀⠀⠍⠑⠗⠂⠀⠛⠑⠇⠑⠎⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠅⠪⠝⠝⠑⠝⠄⠀⠎⠁⠞⠵⠤ ⠀⠀⠀⠵⠩⠹⠑⠝⠀⠍⠳⠎⠎⠑⠝⠀⠛⠑⠛⠑⠃⠑⠝⠑⠝⠋⠁⠇⠇⠎⠀⠍⠊⠞ ⠀⠀⠀⠧⠕⠗⠁⠝⠛⠑⠾⠑⠇⠇⠞⠑⠍⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠧⠑⠗⠎⠑⠓⠑⠝ ⠀⠀⠀⠺⠑⠗⠙⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠄⠁⠄⠑⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠋⠣⠤⠭⠜⠀⠶⠤⠋⠣⠭⠜⠀⠋⠳⠗⠀⠁⠇⠇⠑⠀⠭⠀⠯⠑⠘⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠁ ⠕⠙⠑⠗ ⠀⠀⠀⠋⠣⠤⠭⠜⠀⠶⠤⠋⠣⠭⠜⠀⠀⠋⠀⠁⠑⠀⠀⠭⠀⠯⠑⠘⠙ ⠕⠙⠑⠗ ⠀⠀⠀⠋⠣⠤⠭⠜⠀⠶⠤⠋⠣⠭⠜⠀⠠⠄⠋⠀⠁⠑⠠⠄⠀⠭⠀⠯⠑⠘⠙ \[f(-x) =-f(x) \; \text{für alle} \; x \in D\] ⠼⠁⠄⠃⠀⠞⠗⠑⠝⠝⠑⠝⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠝ ⠀⠀⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠡⠎⠙⠗⠳⠉⠅⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠠⠀⠀⠵⠩⠇⠑⠝⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠁⠝⠀⠙⠑⠗⠀⠾⠑⠇⠇⠑ ⠀⠀⠀⠀⠀⠀⠩⠝⠑⠎⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠎ ⠿⠈⠀⠀⠵⠩⠇⠑⠝⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠵⠺⠊⠱⠑⠝⠀⠵⠺⠩⠀⠥⠝⠤ ⠀⠀⠀⠀⠀⠀⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠃⠑⠝⠁⠹⠃⠁⠗⠞⠑⠝⠀⠵⠩⠹⠑⠝ ⠿⠈⠀⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠏⠥⠝⠅⠞ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠾⠑⠓⠞⠀⠊⠝⠀⠙⠑⠗⠀⠗⠑⠤ ⠛⠑⠇⠀⠚⠑⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠦⠎⠁⠞⠵⠴⠀⠁⠇⠇⠩⠝ ⠡⠋⠀⠩⠝⠑⠗⠀⠵⠩⠇⠑⠄⠀⠩⠝⠑⠝⠀⠞⠗⠑⠝⠝⠾⠗⠊⠹⠀⠵⠥⠗ ⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠩⠝⠑⠎⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠵⠩⠇⠑⠝⠤ ⠥⠍⠃⠗⠥⠹⠎⠀⠛⠊⠃⠞⠀⠑⠎⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞ ⠝⠊⠹⠞⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠝⠊⠍⠍⠞⠀⠩⠝⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠦⠎⠁⠞⠵⠴⠀⠕⠋⠞⠍⠁⠇⠎⠀⠍⠑⠓⠗⠀⠁⠇⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠁⠄⠑⠤⠼⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠃ ⠝⠥⠗⠀⠩⠝⠑⠀⠵⠩⠇⠑⠀⠩⠝⠄⠀⠙⠁⠓⠑⠗⠀⠺⠊⠗⠙⠀⠩⠝⠀⠵⠩⠹⠑⠝ ⠃⠑⠝⠪⠞⠊⠛⠞⠂⠀⠙⠁⠎⠀⠡⠋⠀⠙⠬⠀⠋⠕⠗⠞⠎⠑⠞⠵⠥⠝⠛⠀⠊⠝ ⠙⠑⠗⠀⠝⠜⠹⠾⠑⠝⠀⠵⠩⠇⠑⠀⠡⠋⠍⠑⠗⠅⠎⠁⠍⠀⠍⠁⠹⠞⠄ ⠀⠀⠙⠁⠎⠀⠎⠑⠞⠵⠑⠝⠀⠧⠕⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠊⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠑⠗⠋⠕⠇⠛⠞⠀⠝⠊⠹⠞ ⠺⠊⠇⠇⠅⠳⠗⠇⠊⠹⠄⠀⠊⠾⠀⠩⠝⠀⠵⠩⠇⠑⠝⠥⠍⠃⠗⠥⠹⠀⠝⠕⠞⠤ ⠺⠑⠝⠙⠊⠛⠂⠀⠺⠊⠗⠙⠀⠵⠺⠊⠱⠑⠝⠀⠵⠺⠩⠀⠋⠜⠇⠇⠑⠝ ⠥⠝⠞⠑⠗⠱⠬⠙⠑⠝⠒ ⠠⠤⠀⠺⠊⠗⠙⠀⠩⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠡⠎⠙⠗⠥⠉⠅⠀⠁⠝ ⠀⠀⠀⠙⠑⠗⠀⠾⠑⠇⠇⠑⠀⠩⠝⠑⠎⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠎⠀⠥⠍⠛⠑⠤ ⠀⠀⠀⠃⠗⠕⠹⠑⠝⠂⠀⠊⠾⠀⠁⠇⠎⠀⠵⠩⠇⠑⠝⠞⠗⠑⠝⠝⠵⠩⠤ ⠀⠀⠀⠹⠑⠝⠀⠀⠿⠠⠀⠀⠶⠏⠥⠝⠅⠞⠀⠼⠋⠠⠶⠀⠵⠥⠀⠎⠑⠞⠵⠑⠝⠄ ⠠⠤⠀⠺⠊⠗⠙⠀⠙⠑⠗⠀⠡⠎⠙⠗⠥⠉⠅⠀⠵⠺⠊⠱⠑⠝⠀⠵⠺⠩⠀⠥⠝⠤ ⠀⠀⠀⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠁⠝⠩⠝⠁⠝⠙⠑⠗⠀⠁⠝⠱⠇⠬⠮⠑⠝⠙⠑ ⠀⠀⠀⠵⠩⠹⠑⠝⠀⠥⠍⠛⠑⠃⠗⠕⠹⠑⠝⠂⠀⠊⠾⠀⠀⠿⠈⠀⠀⠶⠏⠥⠝⠅⠞ ⠀⠀⠀⠼⠙⠠⠶⠀⠁⠇⠎⠀⠦⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠝⠙⠑⠎⠴ ⠀⠀⠀⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠵⠥⠀⠎⠑⠞⠵⠑⠝⠄ ⠀⠀⠊⠝⠀⠵⠺⠩⠀⠺⠩⠞⠑⠗⠑⠝⠀⠋⠜⠇⠇⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠵⠩⠹⠑⠝ ⠍⠊⠞⠀⠀⠿⠈⠀⠀⠶⠏⠥⠝⠅⠞⠀⠼⠙⠠⠶⠀⠛⠑⠺⠊⠎⠎⠑⠗⠍⠁⠮⠑⠝ ⠵⠥⠎⠁⠍⠍⠑⠝⠛⠑⠓⠁⠇⠞⠑⠝⠒ ⠠⠤⠀⠅⠪⠝⠝⠞⠑⠝⠀⠵⠺⠩⠀⠃⠑⠝⠁⠹⠃⠁⠗⠞⠑⠀⠵⠩⠹⠑⠝⠀⠍⠊⠞ ⠀⠀⠀⠚⠑⠺⠩⠇⠎⠀⠩⠛⠑⠝⠑⠝⠀⠃⠑⠙⠣⠞⠥⠝⠛⠑⠝⠀⠛⠑⠍⠩⠝⠎⠁⠍ ⠀⠀⠀⠁⠇⠎⠀⠩⠝⠀⠺⠩⠞⠑⠗⠑⠎⠀⠵⠩⠹⠑⠝⠀⠍⠊⠞⠀⠝⠣⠑⠗⠀⠃⠑⠤ ⠀⠀⠀⠙⠣⠞⠥⠝⠛⠀⠛⠑⠇⠑⠎⠑⠝⠀⠺⠑⠗⠙⠑⠝⠂⠀⠺⠊⠗⠙⠀⠀⠿⠈ ⠀⠀⠀⠶⠏⠥⠝⠅⠞⠀⠼⠙⠠⠶⠀⠵⠺⠊⠱⠑⠝⠀⠙⠬⠀⠃⠩⠙⠑⠝⠀⠛⠑⠤ ⠀⠀⠀⠎⠑⠞⠵⠞⠂⠀⠎⠕⠇⠁⠝⠛⠑⠀⠅⠩⠝⠑⠀⠃⠑⠎⠎⠑⠗⠑⠀⠇⠪⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠉ ⠀⠀⠀⠎⠥⠝⠛⠀⠵⠥⠗⠀⠧⠑⠗⠋⠳⠛⠥⠝⠛⠀⠾⠑⠓⠞⠀⠶⠎⠬⠓⠑⠀⠃⠩⠤ ⠀⠀⠀⠎⠏⠬⠇⠑⠀⠼⠑⠀⠘⠃⠼⠁⠚⠀⠥⠝⠙⠀⠼⠁⠙⠄⠃⠀⠘⠃⠼⠚⠋⠠⠶⠄ ⠠⠤⠀⠊⠝⠀⠎⠊⠞⠥⠁⠞⠊⠕⠝⠑⠝⠂⠀⠊⠝⠀⠙⠑⠝⠑⠝⠀⠩⠝⠀⠇⠑⠑⠗⠤ ⠀⠀⠀⠵⠩⠹⠑⠝⠀⠕⠃⠇⠊⠛⠁⠞⠕⠗⠊⠱⠀⠊⠾⠂⠀⠙⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅ ⠀⠀⠀⠁⠃⠑⠗⠀⠡⠎⠩⠝⠁⠝⠙⠑⠗⠗⠩⠮⠑⠝⠀⠺⠳⠗⠙⠑⠂ ⠀⠀⠀⠅⠁⠝⠝⠀⠀⠿⠈⠀⠀⠶⠏⠥⠝⠅⠞⠀⠼⠙⠠⠶⠀⠁⠝⠾⠑⠇⠇⠑⠀⠙⠑⠎ ⠀⠀⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠎⠀⠛⠑⠎⠑⠞⠵⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠧⠕⠗ ⠀⠀⠀⠁⠇⠇⠑⠍⠀⠃⠩⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠝⠀⠥⠝⠙⠀⠃⠗⠳⠹⠑⠝⠂ ⠀⠀⠀⠁⠃⠑⠗⠀⠡⠹⠀⠊⠝⠀⠍⠁⠞⠗⠊⠵⠑⠝⠀⠺⠊⠗⠙⠀⠙⠬⠎⠑ ⠀⠀⠀⠞⠑⠹⠝⠊⠅⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠄ ⠀⠀⠿⠈⠀⠀⠶⠏⠥⠝⠅⠞⠀⠼⠙⠠⠶⠀⠊⠝⠀⠙⠬⠎⠑⠝⠀⠋⠥⠝⠅⠞⠊⠕⠤ ⠝⠑⠝⠀⠊⠾⠀⠝⠊⠹⠞⠀⠍⠊⠞⠀⠙⠑⠍⠀⠏⠥⠝⠅⠞⠀⠼⠙⠀⠵⠥⠀⠧⠑⠗⠤ ⠺⠑⠹⠎⠑⠇⠝⠂⠀⠙⠑⠗⠀⠋⠑⠾⠑⠗⠀⠃⠑⠾⠁⠝⠙⠞⠩⠇⠀⠩⠝⠊⠛⠑⠗ ⠎⠽⠍⠃⠕⠇⠑⠠⠤⠀⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇⠀⠀⠿⠸⠈⠑⠀⠀⠶⠣⠗⠕⠶ ⠕⠙⠑⠗⠀⠀⠿⠸⠈⠴⠀⠀⠶⠛⠗⠁⠙⠤⠵⠩⠹⠑⠝⠶⠠⠤⠀⠊⠾⠀⠕⠙⠑⠗ ⠧⠕⠗⠀⠩⠝⠑⠍⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠁⠇⠎⠀⠁⠅⠵⠑⠝⠞⠵⠩⠹⠑⠝ ⠾⠑⠓⠞⠄ ⠼⠁⠄⠉⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗ ⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠠⠰⠶⠀⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠥⠝⠙⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠋⠳⠗⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠃⠤⠼⠁⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠙ ⠀⠀⠺⠑⠝⠝⠀⠩⠛⠑⠝⠎⠀⠋⠳⠗⠀⠙⠁⠎⠀⠊⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠥⠍⠵⠥⠎⠑⠞⠵⠑⠝⠙⠑⠀⠺⠑⠗⠅⠀⠙⠑⠗⠀⠵⠩⠹⠑⠝⠃⠑⠾⠁⠝⠙ ⠑⠗⠺⠩⠞⠑⠗⠞⠀⠺⠥⠗⠙⠑⠀⠕⠙⠑⠗⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠃⠑⠤ ⠎⠕⠝⠙⠑⠗⠓⠩⠞⠑⠝⠀⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠀⠕⠙⠑⠗⠀⠑⠗⠅⠇⠜⠗⠞ ⠺⠑⠗⠙⠑⠝⠀⠍⠳⠎⠎⠑⠝⠂⠀⠊⠾⠀⠑⠎⠀⠝⠕⠞⠺⠑⠝⠙⠊⠛⠂⠀⠁⠝⠤ ⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠑⠝ ⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠙⠑⠗⠀⠧⠕⠗⠇⠁⠛⠑⠀⠁⠝⠵⠥⠃⠗⠊⠝⠛⠑⠝⠄ ⠑⠃⠑⠝⠋⠁⠇⠇⠎⠀⠎⠕⠇⠇⠞⠑⠀⠡⠋⠀⠙⠬⠀⠡⠋⠇⠪⠎⠥⠝⠛⠀⠧⠕⠝ ⠞⠁⠃⠑⠇⠇⠑⠝⠀⠕⠙⠑⠗⠀⠙⠬⠀⠧⠑⠗⠃⠁⠇⠊⠎⠬⠗⠥⠝⠛⠀⠃⠵⠺⠄ ⠙⠁⠎⠀⠺⠑⠛⠇⠁⠎⠎⠑⠝⠀⠧⠕⠝⠀⠁⠃⠃⠊⠇⠙⠥⠝⠛⠑⠝⠀⠓⠊⠝⠛⠑⠤ ⠺⠬⠎⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠂⠀⠺⠑⠇⠹⠑⠀⠙⠬⠀⠛⠁⠝⠵⠑⠀⠳⠃⠑⠗⠤ ⠞⠗⠁⠛⠥⠝⠛⠀⠙⠑⠎⠀⠺⠑⠗⠅⠑⠎⠀⠃⠑⠞⠗⠑⠋⠋⠑⠝⠂⠀⠺⠑⠗⠙⠑⠝ ⠊⠝⠀⠩⠝⠑⠍⠀⠩⠛⠑⠝⠑⠝⠀⠁⠃⠱⠝⠊⠞⠞⠀⠕⠙⠑⠗⠀⠅⠁⠏⠊⠞⠑⠇ ⠍⠊⠞⠀⠑⠝⠞⠎⠏⠗⠑⠹⠑⠝⠙⠑⠗⠀⠳⠃⠑⠗⠱⠗⠊⠋⠞⠀⠁⠍⠀⠁⠝⠤ ⠋⠁⠝⠛⠀⠙⠑⠎⠀⠺⠑⠗⠅⠑⠎⠀⠃⠵⠺⠄⠀⠚⠑⠙⠑⠎⠀⠃⠁⠝⠙⠑⠎ ⠙⠑⠎⠀⠃⠗⠁⠊⠇⠇⠑⠃⠥⠹⠑⠎⠀⠵⠥⠎⠁⠍⠍⠑⠝⠛⠑⠋⠁⠎⠎⠞⠄ ⠓⠬⠗⠀⠺⠑⠗⠙⠑⠝⠀⠙⠬⠀⠩⠝⠛⠑⠋⠳⠓⠗⠞⠑⠝⠀⠵⠩⠹⠑⠝⠀⠊⠝ ⠩⠝⠑⠗⠀⠇⠊⠾⠑⠀⠡⠋⠛⠑⠋⠳⠓⠗⠞⠄ ⠀⠀⠛⠊⠇⠞⠀⠙⠬⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠀⠝⠥⠗⠀⠋⠳⠗⠀⠩⠝⠵⠑⠇⠝⠑ ⠏⠁⠎⠎⠁⠛⠑⠝⠀⠊⠍⠀⠺⠑⠗⠅⠂⠀⠺⠊⠗⠙⠀⠙⠬⠎⠑⠀⠊⠝⠀⠙⠑⠝ ⠅⠇⠁⠍⠍⠑⠗⠝⠀⠋⠳⠗⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠁⠝⠀⠙⠑⠗⠀⠚⠑⠺⠩⠤ ⠇⠊⠛⠑⠝⠀⠾⠑⠇⠇⠑⠀⠩⠝⠛⠑⠋⠳⠛⠞⠄⠀⠎⠕⠍⠊⠞⠀⠺⠑⠗⠙⠑⠝ ⠎⠬⠀⠝⠊⠹⠞⠀⠁⠇⠎⠀⠞⠑⠭⠞⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠧⠕⠗⠤ ⠇⠁⠛⠑⠀⠛⠑⠇⠑⠎⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠑ ⠀⠀⠙⠬⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠤ ⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠠⠤⠀⠎⠕⠺⠕⠓⠇⠀⠊⠝⠀⠩⠝⠑⠍⠀⠩⠛⠑⠝⠑⠝ ⠁⠃⠱⠝⠊⠞⠞⠀⠁⠇⠎⠀⠡⠹⠀⠊⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠠⠤⠀⠺⠑⠗⠙⠑⠝ ⠊⠝⠀⠙⠑⠍⠀⠅⠳⠗⠵⠥⠝⠛⠎⠛⠗⠁⠙⠀⠺⠬⠀⠙⠑⠗⠀⠳⠃⠗⠊⠛⠑ ⠞⠑⠭⠞⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠀⠀⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠑⠀⠼⠋⠄⠉⠀⠘⠃⠼⠚⠁⠀⠥⠝⠙⠀⠼⠁⠙⠄⠉ ⠘⠃⠼⠚⠛⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠋ ⠼⠃⠀⠵⠊⠋⠋⠑⠗⠝⠀⠥⠝⠙⠀⠵⠁⠓⠇⠑⠝ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠼⠃⠄⠁⠀⠁⠗⠁⠃⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠝⠀⠥⠝⠙⠀⠵⠁⠓⠇⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠧⠑⠗⠋⠳⠛⠞⠀⠳⠃⠑⠗ ⠵⠺⠩⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠎⠋⠕⠗⠍⠑⠝⠀⠋⠳⠗⠀⠙⠬⠀⠁⠗⠁⠃⠊⠤ ⠱⠑⠝⠀⠵⠊⠋⠋⠑⠗⠝⠒ ⠠⠤⠀⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑ ⠠⠤⠀⠛⠑⠎⠑⠝⠅⠞⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑⠀⠺⠑⠗⠙⠑⠝⠀⠵⠊⠋⠤ ⠋⠑⠗⠝⠀⠍⠊⠞⠀⠙⠑⠝⠎⠑⠇⠃⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠺⠬ ⠙⠬⠀⠇⠁⠞⠩⠝⠊⠱⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠁⠀⠃⠊⠎⠀⠚⠀⠛⠑⠃⠊⠇⠤ ⠙⠑⠞⠄⠀⠧⠕⠝⠀⠙⠬⠎⠑⠝⠀⠥⠝⠞⠑⠗⠱⠩⠙⠑⠝⠀⠎⠬⠀⠎⠊⠹ ⠙⠥⠗⠹⠀⠙⠁⠎⠀⠧⠕⠗⠁⠝⠾⠑⠇⠇⠑⠝⠀⠙⠑⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠎⠄ ⠀⠀⠙⠬⠀⠵⠊⠋⠋⠑⠗⠝⠀⠙⠑⠗⠀⠛⠑⠎⠑⠝⠅⠞⠑⠝⠀⠱⠗⠩⠃⠺⠩⠎⠑ ⠃⠑⠾⠑⠓⠑⠝⠀⠡⠎⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠂⠀⠊⠝⠀⠙⠑⠝⠑⠝⠀⠙⠬ ⠏⠥⠝⠅⠞⠑⠀⠩⠝⠑⠀⠗⠩⠓⠑⠀⠞⠬⠋⠑⠗⠀⠁⠇⠎⠀⠊⠝⠀⠙⠑⠗ ⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑⠀⠛⠑⠎⠑⠞⠵⠞⠀⠎⠊⠝⠙⠄⠀⠡⠹⠀⠙⠬⠤ ⠎⠑⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠎⠊⠝⠙⠀⠍⠊⠞⠀⠍⠑⠓⠗⠑⠗⠑⠝ ⠃⠑⠙⠣⠞⠥⠝⠛⠑⠝⠀⠃⠑⠇⠑⠛⠞⠀⠥⠝⠙⠀⠾⠑⠇⠇⠑⠝⠀⠝⠥⠗⠀⠊⠝ ⠃⠑⠾⠊⠍⠍⠞⠑⠝⠀⠅⠕⠝⠞⠑⠭⠞⠑⠝⠀⠵⠊⠋⠋⠑⠗⠝⠀⠙⠁⠗⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠤⠼⠃⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠛ ⠼⠃⠄⠁⠄⠁⠀⠵⠁⠓⠇⠑⠝⠀⠊⠝⠀⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠼⠀⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝ ⠿⠁⠀⠀⠵⠊⠋⠋⠑⠗⠀⠩⠝⠎ ⠿⠃⠀⠀⠵⠊⠋⠋⠑⠗⠀⠵⠺⠩ ⠿⠉⠀⠀⠵⠊⠋⠋⠑⠗⠀⠙⠗⠩ ⠿⠙⠀⠀⠵⠊⠋⠋⠑⠗⠀⠧⠬⠗ ⠿⠑⠀⠀⠵⠊⠋⠋⠑⠗⠀⠋⠳⠝⠋ ⠿⠋⠀⠀⠵⠊⠋⠋⠑⠗⠀⠎⠑⠹⠎ ⠿⠛⠀⠀⠵⠊⠋⠋⠑⠗⠀⠎⠬⠃⠑⠝ ⠿⠓⠀⠀⠵⠊⠋⠋⠑⠗⠀⠁⠹⠞ ⠿⠊⠀⠀⠵⠊⠋⠋⠑⠗⠀⠝⠣⠝ ⠿⠚⠀⠀⠵⠊⠋⠋⠑⠗⠀⠝⠥⠇⠇ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠃⠑⠾⠑⠓⠞⠀⠩⠝⠑ ⠁⠗⠁⠃⠊⠱⠑⠀⠵⠁⠓⠇⠀⠛⠗⠥⠝⠙⠎⠜⠞⠵⠇⠊⠹⠠⠤⠀⠺⠬⠀⠊⠝ ⠙⠑⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠡⠹⠠⠤⠀⠡⠎⠀⠙⠑⠍⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝ ⠥⠝⠙⠀⠩⠝⠑⠗⠀⠕⠙⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠝⠀⠵⠊⠋⠋⠑⠗⠝⠄⠀⠙⠬⠎ ⠺⠊⠗⠙⠀⠁⠇⠎⠀⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑⠀⠃⠑⠵⠩⠹⠝⠑⠞⠄ ⠀⠀⠝⠁⠹⠀⠙⠑⠍⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠀⠿⠼⠀⠀⠾⠑⠇⠇⠑⠝⠀⠙⠬ ⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠙⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠁⠀⠃⠊⠎⠀⠚⠀⠙⠬ ⠵⠊⠋⠋⠑⠗⠝⠀⠼⠁⠀⠃⠊⠎⠀⠼⠊⠀⠥⠝⠙⠀⠼⠚⠀⠙⠁⠗⠂⠀⠥⠝⠙ ⠵⠺⠁⠗⠀⠛⠗⠥⠝⠙⠎⠜⠞⠵⠇⠊⠹⠀⠃⠊⠎⠀⠵⠥⠍⠀⠝⠜⠹⠾⠑⠝ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠂⠀⠵⠩⠇⠑⠝⠑⠝⠙⠑⠀⠕⠙⠑⠗⠀⠾⠗⠊⠹⠀⠃⠵⠺⠄ ⠁⠝⠙⠑⠗⠑⠝⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠶⠺⠕⠃⠩⠀⠙⠁⠎⠀⠙⠑⠵⠊⠍⠁⠇⠤ ⠅⠕⠍⠍⠁⠀⠥⠝⠙⠀⠙⠑⠗⠀⠙⠑⠵⠊⠍⠁⠇⠏⠥⠝⠅⠞⠀⠝⠁⠞⠳⠗⠇⠊⠹ ⠝⠊⠹⠞⠀⠁⠇⠎⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠛⠑⠇⠞⠑⠝⠶⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠓ ⠀⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛⠀⠙⠑⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠎⠀⠑⠗⠾⠗⠑⠉⠅⠞ ⠎⠊⠹⠀⠳⠃⠑⠗⠒ ⠠⠤⠀⠙⠬⠀⠵⠊⠋⠋⠑⠗⠝⠀⠶⠊⠝⠀⠙⠑⠗⠀⠾⠁⠝⠙⠁⠗⠙⠤⠀⠕⠙⠑⠗ ⠀⠀⠀⠛⠑⠎⠑⠝⠅⠞⠑⠝⠀⠱⠗⠩⠃⠺⠩⠎⠑⠶ ⠠⠤⠀⠙⠁⠎⠀⠙⠑⠵⠊⠍⠁⠇⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠀⠿⠂ ⠠⠤⠀⠙⠁⠎⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠀⠿⠄ ⠠⠤⠀⠙⠬⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠀⠿⠣⠀⠀⠃⠩⠀⠙⠑⠗ ⠀⠀⠀⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠧⠕⠝⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠝⠀⠙⠑⠵⠊⠍⠁⠇⠤ ⠀⠀⠀⠃⠗⠳⠹⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠃⠄⠁⠄⠙⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑ ⠀⠀⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑⠴⠶ ⠠⠤⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠩⠝⠑⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑ ⠀⠀⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠀⠀⠿⠐ ⠠⠤⠀⠙⠑⠝⠀⠁⠏⠕⠾⠗⠕⠏⠓⠀⠀⠿⠠⠀⠀⠃⠵⠺⠄⠀⠙⠑⠝ ⠀⠀⠀⠾⠗⠊⠹⠀⠀⠿⠤⠀⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠓⠊⠝⠞⠑⠗⠀⠙⠑⠍ ⠀⠀⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝ ⠀⠀⠡⠋⠛⠑⠓⠕⠃⠑⠝⠀⠺⠊⠗⠙⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛⠀⠙⠑⠎ ⠵⠁⠓⠇⠵⠩⠹⠑⠝⠎⠀⠙⠥⠗⠹⠀⠚⠑⠙⠑⠎⠀⠁⠝⠙⠑⠗⠑⠀⠵⠩⠹⠑⠝ ⠎⠕⠺⠬ ⠠⠤⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠠⠤⠀⠙⠁⠎⠀⠵⠩⠇⠑⠝⠑⠝⠙⠑⠠⠤⠀⠡⠮⠑⠗⠀⠃⠩⠀⠵⠩⠇⠑⠝⠤ ⠀⠀⠀⠞⠗⠑⠝⠝⠥⠝⠛⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠼⠙⠀⠀⠿⠈ ⠀⠀⠚⠑⠙⠑⠀⠁⠗⠞⠀⠧⠕⠝⠀⠾⠗⠊⠹⠀⠶⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇⠀⠃⠊⠝⠤ ⠙⠑⠤⠀⠕⠙⠑⠗⠀⠱⠗⠜⠛⠾⠗⠊⠹⠶⠀⠓⠑⠃⠞⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛ ⠙⠑⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠎⠀⠡⠋⠂⠀⠎⠕⠀⠙⠁⠎⠎⠀⠵⠁⠓⠇⠑⠝ ⠝⠁⠹⠀⠙⠬⠎⠑⠍⠀⠾⠑⠞⠎⠀⠩⠝⠀⠝⠣⠑⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠃⠑⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠊ ⠝⠪⠞⠊⠛⠑⠝⠄⠀⠩⠝⠑⠀⠡⠎⠝⠁⠓⠍⠑⠀⠃⠊⠇⠙⠑⠝⠀⠾⠗⠊⠹⠑⠀⠊⠍ ⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠂⠀⠙⠬⠀⠊⠝⠀⠏⠗⠩⠎⠁⠝⠤ ⠛⠁⠃⠑⠝⠀⠁⠝⠾⠑⠇⠇⠑⠀⠩⠝⠑⠗⠀⠝⠥⠇⠇⠀⠧⠕⠗⠀⠙⠑⠍⠀⠙⠑⠤ ⠵⠊⠍⠁⠇⠵⠩⠹⠑⠝⠀⠾⠑⠓⠑⠝⠄ ⠀⠀⠩⠝⠑⠀⠵⠁⠓⠇⠀⠊⠾⠀⠝⠥⠗⠀⠙⠁⠝⠝⠀⠁⠍⠀⠵⠩⠇⠑⠝⠑⠝⠙⠑ ⠵⠥⠀⠞⠗⠑⠝⠝⠑⠝⠂⠀⠺⠑⠝⠝⠀⠙⠬⠎⠀⠥⠝⠧⠑⠗⠍⠩⠙⠇⠊⠹⠀⠊⠾⠂ ⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇⠂⠀⠺⠑⠝⠝⠀⠙⠬⠀⠇⠜⠝⠛⠑⠀⠙⠑⠗⠀⠵⠁⠓⠇ ⠙⠬⠀⠛⠑⠎⠁⠍⠞⠑⠀⠵⠩⠇⠑⠝⠃⠗⠩⠞⠑⠀⠳⠃⠑⠗⠱⠗⠩⠞⠑⠞⠄ ⠀⠀⠩⠝⠀⠁⠏⠕⠾⠗⠕⠏⠓⠂⠀⠙⠑⠗⠀⠙⠬⠀⠾⠑⠇⠇⠑⠀⠧⠕⠝⠀⠋⠳⠓⠤ ⠗⠑⠝⠙⠑⠝⠀⠵⠊⠋⠋⠑⠗⠝⠀⠑⠗⠎⠑⠞⠵⠞⠂⠀⠾⠑⠓⠞⠀⠊⠍⠀⠁⠝⠤ ⠱⠇⠥⠎⠎⠀⠁⠝⠀⠙⠁⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠧⠕⠗⠀⠙⠑⠗⠀⠑⠗⠾⠑⠝ ⠵⠊⠋⠋⠑⠗⠀⠶⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠁⠀⠘⠃⠼⠚⠙⠠⠶⠄ ⠓⠊⠝⠺⠩⠎⠒ ⠀⠀⠙⠑⠝⠀⠵⠊⠋⠋⠑⠗⠝⠀⠊⠝⠀⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑ ⠛⠑⠓⠞⠀⠛⠗⠥⠝⠙⠎⠜⠞⠵⠇⠊⠹⠀⠩⠝⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠧⠕⠗⠤ ⠡⠎⠄⠀⠑⠎⠀⠅⠁⠝⠝⠀⠚⠑⠙⠕⠹⠀⠎⠊⠝⠝⠧⠕⠇⠇⠀⠎⠩⠝⠂⠀⠵⠄⠃⠄ ⠊⠝⠀⠱⠗⠊⠋⠞⠇⠊⠹⠑⠝⠀⠗⠑⠹⠑⠝⠧⠑⠗⠋⠁⠓⠗⠑⠝⠂⠀⠙⠁⠎ ⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠧⠕⠝⠀⠙⠑⠝⠀⠵⠊⠋⠋⠑⠗⠝⠀⠑⠞⠺⠁⠎⠀⠺⠑⠛⠤ ⠵⠥⠗⠳⠉⠅⠑⠝⠀⠕⠙⠑⠗⠀⠛⠜⠝⠵⠇⠊⠹⠀⠙⠁⠗⠡⠋⠀⠵⠥⠀⠧⠑⠗⠤ ⠵⠊⠹⠞⠑⠝⠂⠀⠥⠍⠀⠙⠬⠀⠳⠃⠑⠗⠎⠊⠹⠞⠇⠊⠹⠅⠩⠞⠀⠵⠥⠀⠺⠁⠓⠤ ⠗⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠁⠝⠓⠁⠝⠛⠀⠘⠁⠼⠁⠀⠱⠗⠊⠋⠞⠇⠊⠹⠑⠀⠗⠑⠤ ⠹⠑⠝⠧⠑⠗⠋⠁⠓⠗⠑⠝⠀⠳⠃⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠚ \[3\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠃⠙⠑ \[245\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠁⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠁⠉⠠⠒⠼⠃⠛⠤⠼⠁⠙⠠⠒⠼⠁⠉⠀⠨⠥⠓⠗ \[13:27-14:13 \; \text{Uhr}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠁⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠼⠠⠚⠑ \['05\] ⠼⠃⠄⠁⠄⠃⠀⠵⠁⠓⠇⠑⠝⠀⠊⠝⠀⠛⠑⠎⠑⠝⠅⠞⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠱⠗⠩⠃⠺⠩⠎⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠂⠀⠀⠵⠊⠋⠋⠑⠗⠀⠩⠝⠎ ⠿⠆⠀⠀⠵⠊⠋⠋⠑⠗⠀⠵⠺⠩ ⠿⠒⠀⠀⠵⠊⠋⠋⠑⠗⠀⠙⠗⠩ ⠿⠲⠀⠀⠵⠊⠋⠋⠑⠗⠀⠧⠬⠗ ⠿⠢⠀⠀⠵⠊⠋⠋⠑⠗⠀⠋⠳⠝⠋ ⠿⠖⠀⠀⠵⠊⠋⠋⠑⠗⠀⠎⠑⠹⠎ ⠿⠶⠀⠀⠵⠊⠋⠋⠑⠗⠀⠎⠬⠃⠑⠝ ⠿⠦⠀⠀⠵⠊⠋⠋⠑⠗⠀⠁⠹⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠁⠤⠼⠃⠄⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠁ ⠿⠔⠀⠀⠵⠊⠋⠋⠑⠗⠀⠝⠣⠝ ⠿⠴⠀⠀⠵⠊⠋⠋⠑⠗⠀⠝⠥⠇⠇ ⠀⠀⠊⠍⠀⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠩⠝⠊⠛⠑⠀⠵⠩⠹⠑⠝⠀⠙⠑⠗⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠅⠪⠝⠝⠑⠝⠀⠛⠁⠝⠵⠑⠀⠵⠁⠓⠇⠑⠝ ⠕⠓⠝⠑⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠊⠝⠀⠛⠑⠎⠑⠝⠅⠞⠑⠗⠀⠱⠗⠩⠃⠺⠩⠎⠑ ⠛⠑⠱⠗⠬⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄⠀⠙⠁⠙⠥⠗⠹⠀⠺⠊⠗⠙⠀⠙⠑⠗⠀⠡⠎⠤ ⠙⠗⠥⠉⠅⠀⠥⠍⠀⠩⠝⠀⠵⠩⠹⠑⠝⠀⠅⠳⠗⠵⠑⠗⠄⠀⠵⠥⠙⠑⠍⠀⠅⠁⠝⠝ ⠙⠬⠀⠋⠥⠝⠅⠞⠊⠕⠝⠀⠙⠑⠗⠀⠵⠁⠓⠇⠀⠊⠝⠀⠩⠝⠑⠍⠀⠅⠕⠍⠏⠁⠅⠤ ⠞⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅⠀⠇⠩⠹⠞⠑⠗⠀⠛⠑⠤ ⠙⠣⠞⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠙⠬⠀⠛⠑⠎⠑⠝⠅⠞⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠺⠊⠗⠙⠀⠋⠳⠗⠀⠝⠑⠝⠤ ⠝⠑⠗⠀⠧⠕⠝⠀⠩⠝⠋⠁⠹⠑⠝⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠝⠠⠤⠀⠡⠹⠀⠃⠩ ⠛⠑⠍⠊⠱⠞⠑⠝⠀⠵⠁⠓⠇⠑⠝⠠⠤⠀⠎⠕⠺⠬⠀⠃⠩⠀⠏⠗⠕⠚⠑⠅⠞⠊⠤ ⠧⠑⠝⠀⠺⠬⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠂⠀⠕⠃⠑⠗⠑⠝⠀⠥⠝⠙⠀⠥⠝⠞⠑⠤ ⠗⠑⠝⠀⠊⠝⠙⠊⠵⠑⠎⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠶⠎⠬⠓⠑⠀⠦⠼⠊⠄⠁ ⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠀⠥⠝⠙⠀⠛⠑⠍⠊⠱⠞⠑⠀⠵⠁⠓⠇⠑⠝⠴⠀⠥⠝⠙ ⠦⠼⠁⠚⠄⠉⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠴⠶⠄ ⠀⠀⠩⠝⠑⠗⠀⠵⠁⠓⠇⠀⠊⠝⠀⠛⠑⠎⠑⠝⠅⠞⠑⠗⠀⠱⠗⠩⠃⠺⠩⠎⠑ ⠙⠁⠗⠋⠀⠊⠝⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠂⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠄⠜⠄⠂ ⠁⠃⠑⠗⠀⠝⠊⠹⠞⠀⠊⠝⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠝⠂⠀⠩⠝⠀⠍⠊⠝⠥⠎⠤ ⠵⠩⠹⠑⠝⠀⠧⠕⠗⠡⠎⠛⠑⠓⠑⠝⠄⠀⠡⠹⠀⠊⠝⠀⠙⠬⠎⠑⠝⠀⠋⠜⠇⠇⠑⠝ ⠊⠾⠀⠙⠁⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠝⠊⠹⠞⠀⠝⠕⠞⠺⠑⠝⠙⠊⠛⠄ ⠵⠁⠓⠇⠑⠝⠀⠍⠊⠞⠀⠙⠑⠵⠊⠍⠁⠇⠞⠗⠑⠝⠝⠤⠀⠃⠵⠺⠄⠀⠛⠇⠬⠙⠑⠤ ⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠙⠳⠗⠋⠑⠝⠀⠓⠊⠝⠛⠑⠛⠑⠝⠀⠝⠊⠹⠞⠀⠛⠑⠤ ⠎⠑⠝⠅⠞⠀⠛⠑⠱⠗⠬⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠃ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠅⠁⠝⠝⠀⠙⠬⠀⠛⠑⠎⠑⠝⠅⠞⠑ ⠱⠗⠩⠃⠺⠩⠎⠑⠀⠁⠇⠎⠀⠩⠝⠑⠀⠺⠩⠞⠑⠗⠑⠀⠍⠪⠛⠇⠊⠹⠅⠩⠞ ⠋⠳⠗⠀⠅⠥⠗⠵⠋⠕⠗⠍⠑⠝⠀⠧⠕⠝⠀⠵⠁⠓⠇⠑⠝⠛⠑⠋⠳⠛⠑⠝⠀⠺⠬ ⠕⠗⠙⠝⠥⠝⠛⠎⠵⠁⠓⠇⠑⠝⠂⠀⠙⠑⠵⠊⠍⠁⠇⠅⠇⠁⠎⠎⠊⠋⠊⠅⠁⠞⠕⠤ ⠗⠑⠝⠀⠥⠝⠙⠀⠙⠁⠞⠥⠍⠎⠁⠝⠛⠁⠃⠑⠝⠀⠛⠑⠝⠥⠞⠵⠞⠀⠺⠑⠗⠤ ⠙⠑⠝⠄⠀⠙⠬⠎⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑⠝⠀⠙⠳⠗⠋⠑⠝⠀⠑⠃⠑⠝⠋⠁⠇⠇⠎ ⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠩⠝⠛⠑⠎⠑⠞⠵⠞ ⠺⠑⠗⠙⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠒⠀⠶⠼⠙⠂⠆ \[\frac{1}{3} =\frac{4}{12}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠆⠭⠌⠆⠀⠳⠀⠭⠌⠒⠰⠀⠶⠭⠌⠤⠂ \[\frac{x^{2}}{x^{3}} =x^{-1}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠑⠌⠼⠃⠂⠉⠚⠃⠑⠀⠢⠢⠼⠁⠚ \[e^{2.3025} \approx 10\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠉ ⠼⠃⠄⠁⠄⠉⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠂⠀⠀⠙⠑⠵⠊⠍⠁⠇⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠶⠅⠕⠍⠍⠁⠶ ⠊⠝⠀⠡⠎⠝⠁⠓⠍⠑⠋⠜⠇⠇⠑⠝⠀⠶⠎⠬⠓⠑⠀⠝⠁⠹⠋⠕⠇⠛⠑⠝⠙⠑ ⠑⠗⠇⠌⠞⠑⠗⠥⠝⠛⠑⠝⠶ ⠿⠄⠀⠀⠙⠑⠵⠊⠍⠁⠇⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠶⠏⠥⠝⠅⠞⠶ ⠀⠀⠊⠝⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑⠝⠀⠺⠊⠗⠙⠀⠙⠁⠎⠀⠙⠑⠵⠊⠍⠁⠇⠤ ⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠙⠥⠗⠹⠀⠙⠁⠎⠀⠙⠑⠵⠊⠍⠁⠇⠅⠕⠍⠍⠁⠀⠀⠿⠂ ⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠂⠀⠛⠇⠩⠹⠛⠳⠇⠞⠊⠛⠂⠀⠕⠃⠀⠊⠝⠀⠙⠑⠗ ⠧⠕⠗⠇⠁⠛⠑⠀⠩⠝⠀⠅⠕⠍⠍⠁⠀⠕⠙⠑⠗⠀⠩⠝⠀⠏⠥⠝⠅⠞⠀⠾⠑⠓⠞⠄ ⠀⠀⠙⠑⠗⠀⠏⠥⠝⠅⠞⠀⠼⠉⠀⠀⠿⠄⠀⠀⠺⠊⠗⠙⠀⠁⠇⠎⠀⠙⠑⠵⠊⠤ ⠍⠁⠇⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠧⠑⠗⠍⠬⠙⠑⠝⠂⠀⠙⠁⠀⠑⠗⠀⠊⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠁⠇⠎⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗ ⠇⠁⠝⠛⠑⠀⠵⠁⠓⠇⠑⠝⠀⠃⠑⠇⠑⠛⠞⠀⠊⠾⠄ ⠀⠀⠩⠝⠑⠀⠡⠎⠝⠁⠓⠍⠑⠀⠃⠊⠇⠙⠑⠝⠀⠛⠑⠇⠙⠃⠑⠞⠗⠜⠛⠑⠀⠊⠝ ⠱⠺⠩⠵⠑⠗⠀⠋⠗⠁⠝⠅⠑⠝⠀⠥⠝⠙⠀⠗⠁⠏⠏⠑⠝⠄⠀⠓⠬⠗⠀⠅⠁⠝⠝ ⠙⠬⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠩⠵⠀⠳⠃⠇⠊⠹⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠍⠊⠞ ⠙⠑⠵⠊⠍⠁⠇⠏⠥⠝⠅⠞⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠃⠩⠤ ⠃⠑⠓⠁⠇⠞⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠡⠹⠀⠦⠼⠃⠄⠁⠄⠑ ⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠇⠁⠝⠛⠑⠗⠀⠵⠁⠓⠇⠑⠝⠴⠶⠄ ⠀⠀⠺⠑⠗⠙⠑⠝⠀⠊⠝⠀⠁⠝⠙⠑⠗⠑⠝⠀⠅⠕⠝⠞⠑⠭⠞⠑⠝⠀⠙⠑⠵⠊⠤ ⠍⠁⠇⠏⠥⠝⠅⠞⠑⠀⠊⠝⠀⠙⠑⠗⠀⠧⠕⠗⠇⠁⠛⠑⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞ ⠥⠝⠙⠀⠊⠾⠀⠙⠬⠎⠀⠧⠕⠝⠀⠃⠑⠙⠣⠞⠥⠝⠛⠂⠀⠅⠁⠝⠝⠀⠊⠝ ⠩⠝⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠑⠝⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛ ⠙⠁⠗⠡⠋⠀⠓⠊⠝⠛⠑⠺⠬⠎⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠙ ⠀⠀⠾⠗⠊⠹⠑⠂⠀⠙⠬⠀⠊⠝⠀⠛⠑⠇⠙⠃⠑⠞⠗⠜⠛⠑⠝⠀⠁⠝⠾⠑⠇⠇⠑ ⠩⠝⠑⠗⠀⠕⠙⠑⠗⠀⠵⠺⠩⠑⠗⠀⠝⠥⠇⠇⠑⠝⠀⠾⠑⠓⠑⠝⠂⠀⠺⠑⠗⠙⠑⠝ ⠙⠥⠗⠹⠀⠙⠁⠎⠀⠵⠩⠹⠑⠝⠀⠏⠥⠝⠅⠞⠑⠀⠼⠉⠂⠋⠀⠀⠿⠤ ⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠉⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠃⠂⠉⠙ \[2,34\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠉⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠙⠑⠂⠊⠓ \[45.98\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠉⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠤⠂⠑⠚ \[-,50\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠉⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠼⠁⠚⠚⠂⠤ \[100,-\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠉⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠼⠁⠚⠚⠂⠤⠤ \[100,--\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠑ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠉⠀⠘⠃⠼⠚⠋ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠧⠕⠝⠀⠱⠺⠩⠵⠑⠗⠀⠋⠗⠁⠝⠤ ⠅⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠩⠵⠄⠶ ⠀⠀⠀⠸⠨⠋⠗⠄⠼⠉⠄⠑⠚ \[\text{Fr.} \; 3.50\] ⠼⠃⠄⠁⠄⠙⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠼⠄⠄⠄⠣⠄⠄⠄⠜⠀⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠗⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠥⠹ ⠀⠀⠃⠩⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠝⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑⠝⠀⠺⠊⠗⠙ ⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠙⠬⠀⠎⠊⠹⠀⠺⠬⠙⠑⠗⠓⠕⠇⠑⠝⠤ ⠙⠑⠀⠵⠊⠋⠋⠑⠗⠝⠋⠕⠇⠛⠑⠀⠳⠃⠑⠗⠾⠗⠊⠹⠑⠝⠄⠀⠊⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠺⠊⠗⠙⠀⠙⠬⠎⠑⠀⠵⠊⠋⠋⠑⠗⠝⠋⠕⠇⠛⠑ ⠊⠝⠀⠗⠥⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠿⠣⠄⠄⠄⠜⠀⠀⠕⠓⠝⠑ ⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠛⠑⠎⠑⠞⠵⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠙⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠚⠂⠣⠉⠜ \[0,\overline{3}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠙⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠁⠂⠣⠃⠓⠑⠛⠁⠙⠜ \[1,\overline{285714}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠉⠤⠼⠃⠄⠁⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠋ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠙⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠉⠂⠙⠃⠣⠓⠜ \[3,42\overline{8}\] ⠼⠃⠄⠁⠄⠑⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠇⠁⠝⠛⠑⠗⠀⠵⠁⠓⠇⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠄⠀⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠀⠀⠙⠬⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠇⠁⠝⠛⠑⠗⠀⠵⠁⠓⠇⠑⠝⠀⠊⠝ ⠛⠗⠥⠏⠏⠑⠝⠀⠧⠕⠝⠀⠼⠉⠀⠵⠊⠋⠋⠑⠗⠝⠀⠑⠗⠋⠕⠇⠛⠞⠀⠙⠥⠗⠹ ⠙⠁⠎⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠏⠥⠝⠅⠞⠀⠼⠉⠀⠀⠿⠄ ⠥⠝⠛⠑⠁⠹⠞⠑⠞⠀⠙⠑⠎⠀⠊⠝⠀⠙⠑⠗⠀⠧⠕⠗⠇⠁⠛⠑⠀⠧⠑⠗⠺⠑⠝⠤ ⠙⠑⠞⠑⠝⠀⠵⠩⠹⠑⠝⠎⠀⠶⠏⠥⠝⠅⠞⠂⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠂ ⠁⠏⠕⠾⠗⠕⠏⠓⠂⠀⠅⠕⠍⠍⠁⠶⠄ ⠀⠀⠃⠩⠀⠛⠑⠇⠙⠃⠑⠞⠗⠜⠛⠑⠝⠀⠊⠝⠀⠱⠺⠩⠵⠑⠗⠀⠋⠗⠁⠝⠅⠑⠝ ⠥⠝⠙⠀⠗⠁⠏⠏⠑⠝⠀⠺⠊⠗⠙⠀⠊⠝⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇⠀⠊⠝ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠙⠑⠗⠀⠏⠥⠝⠅⠞⠀⠥⠝⠙⠀⠑⠝⠞⠎⠏⠗⠑⠹⠑⠝⠙ ⠊⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠏⠥⠝⠅⠞⠀⠼⠉⠀⠀⠿⠄⠀⠀⠎⠕⠺⠕⠓⠇ ⠁⠇⠎⠀⠙⠑⠵⠊⠍⠁⠇⠞⠗⠑⠝⠝⠤⠀⠁⠇⠎⠀⠡⠹⠀⠁⠇⠎⠀⠛⠇⠬⠙⠑⠤ ⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠶⠎⠬⠓⠑⠀⠡⠹ ⠦⠼⠃⠄⠁⠄⠉⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑⠴⠶⠄⠀⠙⠬⠎⠀⠋⠳⠓⠗⠞⠀⠌⠤ ⠮⠑⠗⠾⠀⠎⠑⠇⠞⠑⠝⠀⠵⠥⠀⠙⠣⠞⠥⠝⠛⠎⠱⠺⠬⠗⠊⠛⠅⠩⠞⠑⠝⠂ ⠙⠁⠀⠝⠁⠹⠀⠙⠑⠍⠀⠇⠑⠞⠵⠞⠑⠝⠀⠏⠥⠝⠅⠞⠀⠝⠊⠹⠞⠀⠙⠗⠩⠂ ⠎⠕⠝⠙⠑⠗⠝⠀⠝⠥⠗⠀⠵⠺⠩⠀⠵⠊⠋⠋⠑⠗⠝⠀⠋⠕⠇⠛⠑⠝⠀⠥⠝⠙ ⠙⠁⠓⠑⠗⠀⠁⠇⠎⠀⠗⠁⠏⠏⠑⠝⠀⠵⠥⠀⠑⠗⠅⠑⠝⠝⠑⠝⠀⠎⠊⠝⠙⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠙⠤⠼⠃⠄⠁⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠛ ⠀⠀⠙⠬⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠧⠑⠗⠃⠗⠩⠞⠑⠞⠑ ⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠇⠁⠝⠛⠑⠗⠀⠵⠁⠓⠇⠑⠝⠀⠙⠥⠗⠹⠀⠇⠑⠑⠗⠵⠩⠤ ⠹⠑⠝⠀⠺⠊⠗⠙⠀⠝⠊⠹⠞⠀⠳⠃⠑⠗⠝⠕⠍⠍⠑⠝⠂⠀⠙⠁⠀⠙⠁⠎ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛⠀⠙⠑⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠎ ⠡⠋⠓⠑⠃⠞⠀⠥⠝⠙⠀⠙⠬⠀⠝⠣⠑⠀⠵⠊⠋⠋⠑⠗⠝⠛⠗⠥⠏⠏⠑⠀⠺⠬⠤ ⠙⠑⠗⠥⠍⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠤ ⠝⠑⠞⠀⠺⠑⠗⠙⠑⠝⠀⠍⠳⠎⠎⠞⠑⠄ ⠀⠀⠑⠃⠑⠝⠎⠕⠀⠊⠾⠀⠙⠬⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠍⠊⠞⠀⠁⠏⠕⠾⠗⠕⠤ ⠏⠓⠑⠝⠀⠶⠱⠺⠩⠵⠀⠥⠝⠙⠀⠇⠬⠹⠞⠑⠝⠾⠩⠝⠶⠀⠋⠳⠗⠀⠙⠬ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠥⠝⠛⠑⠩⠛⠝⠑⠞⠄⠀⠙⠑⠗⠀⠁⠏⠕⠾⠗⠕⠏⠓ ⠺⠊⠗⠙⠀⠍⠊⠞⠀⠂⠙⠑⠍⠎⠑⠇⠃⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠺⠬ ⠙⠁⠎⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠀⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠂⠀⠙⠁⠎⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛⠀⠙⠑⠎ ⠵⠁⠓⠇⠵⠩⠹⠑⠝⠎⠀⠡⠋⠓⠑⠃⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠑⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠃⠉⠄⠉⠑⠙ \[23.354\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠑⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠁⠄⠉⠃⠙⠄⠉⠙⠃ \[1\;324\;342\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠑⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠁⠊⠄⠚⠙⠁⠄⠑⠚⠚ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠓ \[19'041'500\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠑⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠼⠃⠋⠄⠚⠊⠙⠄⠉⠁⠓⠂⠛⠑⠁⠄⠋⠃⠓ \[26\;094\;318,751\;628\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠑⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠼⠁⠄⠚⠚⠚ \[1.000\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠑⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠼⠁⠚⠚⠚ \[1000\] ⠼⠃⠄⠁⠄⠋⠀⠕⠗⠙⠝⠥⠝⠛⠎⠵⠁⠓⠇⠑⠝⠂ ⠀⠀⠀⠀⠀⠀⠀⠙⠑⠵⠊⠍⠁⠇⠅⠇⠁⠎⠎⠊⠋⠊⠅⠁⠞⠕⠗⠑⠝⠂ ⠀⠀⠀⠀⠀⠀⠀⠙⠁⠞⠑⠝⠀⠥⠝⠙⠀⠥⠓⠗⠵⠩⠞⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠙⠬⠀⠧⠑⠗⠃⠊⠝⠙⠥⠝⠛⠑⠝⠀⠡⠎⠀⠵⠁⠓⠇⠑⠝⠀⠥⠝⠙⠀⠊⠝⠤ ⠞⠑⠗⠏⠥⠝⠅⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠛⠗⠥⠝⠙⠎⠜⠞⠵⠤ ⠇⠊⠹⠀⠺⠬⠀⠊⠝⠀⠙⠑⠗⠀⠧⠕⠗⠇⠁⠛⠑⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄⠀⠙⠁⠃⠩ ⠊⠾⠀⠵⠥⠀⠃⠑⠁⠹⠞⠑⠝⠒ ⠠⠤⠀⠩⠝⠀⠏⠥⠝⠅⠞⠀⠊⠍⠀⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠕⠙⠑⠗⠀⠵⠺⠊⠤ ⠀⠀⠀⠱⠑⠝⠀⠵⠁⠓⠇⠑⠝⠀⠊⠾⠀⠅⠩⠝⠀⠙⠑⠵⠊⠍⠁⠇⠏⠥⠝⠅⠞ ⠀⠀⠀⠥⠝⠙⠀⠺⠊⠗⠙⠀⠙⠁⠓⠑⠗⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠼⠉⠀⠀⠿⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠑⠤⠼⠃⠄⠁⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠊ ⠀⠀⠀⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠄⠀⠝⠁⠹⠀⠙⠑⠍⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠎⠤ ⠀⠀⠀⠏⠥⠝⠅⠞⠀⠑⠝⠞⠋⠜⠇⠇⠞⠀⠙⠁⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠄ ⠠⠤⠀⠊⠝⠀⠥⠓⠗⠵⠩⠞⠁⠝⠛⠁⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠙⠕⠏⠏⠑⠇⠤ ⠀⠀⠀⠏⠥⠝⠅⠞⠑⠀⠁⠇⠎⠀⠊⠝⠞⠑⠗⠏⠥⠝⠅⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝ ⠀⠀⠀⠙⠥⠗⠹⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠀⠿⠠⠀⠀⠁⠝⠛⠑⠅⠳⠝⠙⠊⠛⠞⠄ ⠠⠤⠀⠊⠝⠀⠙⠁⠞⠥⠍⠎⠁⠝⠛⠁⠃⠑⠝⠀⠎⠊⠝⠙⠀⠃⠊⠝⠙⠑⠾⠗⠊⠹⠑ ⠀⠀⠀⠝⠊⠹⠞⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠀⠿⠠⠀⠀⠁⠝⠵⠥⠅⠳⠝⠙⠊⠤ ⠀⠀⠀⠛⠑⠝⠄⠀⠙⠬⠀⠝⠁⠹⠋⠕⠇⠛⠑⠝⠙⠑⠀⠵⠁⠓⠇⠀⠑⠗⠓⠜⠇⠞ ⠀⠀⠀⠚⠑⠙⠕⠹⠀⠩⠝⠀⠝⠣⠑⠎⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠉⠄⠑⠄⠁⠁ \[3.5.11\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠛⠄⠁⠚⠄⠙⠄⠉ \[7.10.4.3\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠃⠙⠄⠁⠃⠄⠃⠚⠁⠚ \[24.12.2010\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠼⠃⠚⠁⠚⠤⠼⠁⠃⠤⠼⠃⠙ \[2010-12-24\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠚ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠼⠁⠃⠄⠙⠑⠀⠨⠥⠓⠗ \[12.45 \; \text{Uhr}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠼⠁⠃⠠⠒⠼⠙⠑⠀⠨⠥⠓⠗ \[12:45 \; \text{Uhr}\] ⠀⠀⠺⠕⠀⠙⠬⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠋⠳⠗⠀⠎⠕⠇⠹⠑⠀⠵⠁⠓⠇⠑⠝⠤ ⠛⠑⠋⠳⠛⠑⠀⠩⠝⠑⠀⠧⠑⠗⠅⠳⠗⠵⠑⠝⠙⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠃⠬⠤ ⠞⠑⠞⠂⠀⠙⠁⠗⠋⠀⠙⠬⠎⠑⠀⠑⠃⠑⠝⠋⠁⠇⠇⠎⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠛ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠊⠝⠀⠡⠋⠛⠁⠃⠑⠝⠀⠙⠑⠗⠀⠛⠗⠥⠝⠙⠱⠥⠇⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠂⠀⠊⠝⠀⠙⠑⠝⠑⠝⠀⠩⠝⠀⠑⠗⠛⠑⠃⠝⠊⠎⠀⠩⠝⠵⠥⠤ ⠞⠗⠁⠛⠑⠝⠀⠊⠾⠂⠀⠺⠊⠗⠙⠀⠕⠋⠞⠀⠩⠝⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠝⠁⠹ ⠙⠑⠍⠀⠛⠇⠩⠹⠓⠩⠞⠎⠵⠩⠹⠑⠝⠀⠛⠑⠎⠑⠞⠵⠞⠄⠀⠙⠁⠙⠥⠗⠹ ⠺⠊⠗⠙⠀⠥⠝⠞⠑⠗⠀⠁⠝⠙⠑⠗⠑⠍⠀⠙⠁⠎⠀⠛⠇⠩⠹⠓⠩⠞⠎⠵⠩⠹⠑⠝ ⠃⠑⠎⠎⠑⠗⠀⠧⠕⠝⠀⠩⠝⠑⠍⠀⠛⠀⠥⠝⠞⠑⠗⠱⠩⠙⠃⠁⠗⠄⠶ ⠼⠂⠀⠀⠼⠃⠀⠖⠼⠉⠀⠶⠼ ⠼⠆⠀⠀⠼⠁⠀⠖⠼⠙⠀⠶⠼ \[1. \quad 2 +3 = \\ 2. \quad 1 +4 =\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠁ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠓ ⠀⠀⠀⠼⠒⠑⠂⠂ \[3.5.11\] G ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠁⠄⠋⠀⠘⠃⠼⠚⠊ ⠀⠀⠀⠼⠆⠲⠁⠃⠼⠃⠚⠁⠚ \[24.12.2010\] ⠼⠃⠄⠃⠀⠗⠪⠍⠊⠱⠑⠀⠵⠁⠓⠇⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠊⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠀⠩⠝⠎ ⠿⠧⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠀⠋⠳⠝⠋ ⠿⠭⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠀⠵⠑⠓⠝ ⠿⠇⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠀⠋⠳⠝⠋⠵⠊⠛ ⠿⠉⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠀⠓⠥⠝⠙⠑⠗⠞ ⠿⠙⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠀⠋⠳⠝⠋⠓⠥⠝⠙⠑⠗⠞ ⠿⠍⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠀⠞⠡⠎⠑⠝⠙ ⠀⠀⠗⠪⠍⠊⠱⠑⠀⠵⠁⠓⠇⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠁⠇⠎⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠠⠶⠋⠕⠇⠛⠑⠝⠶⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄⠀⠁⠇⠎⠀⠛⠗⠕⠮⠤ ⠃⠥⠹⠾⠁⠃⠑⠝⠀⠎⠊⠝⠙⠀⠎⠬⠀⠙⠑⠍⠝⠁⠹⠀⠾⠑⠞⠎⠀⠍⠊⠞⠀⠀⠿⠘ ⠁⠝⠵⠥⠅⠳⠝⠙⠊⠛⠑⠝⠄⠀⠁⠇⠎⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠛⠑⠤ ⠱⠗⠬⠃⠑⠝⠀⠃⠑⠙⠳⠗⠋⠑⠝⠀⠎⠬⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠅⠱⠗⠊⠋⠞⠀⠓⠌⠋⠊⠛⠀⠅⠩⠝⠑⠗⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠁⠄⠋⠤⠼⠃⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠃ ⠶⠎⠬⠓⠑⠀⠦⠼⠉⠄⠃⠀⠛⠗⠕⠮⠤⠀⠥⠝⠙⠀⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛ ⠇⠁⠞⠩⠝⠊⠱⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠴⠶⠄ ⠀⠀⠳⠃⠑⠗⠾⠗⠊⠹⠑⠝⠑⠀⠗⠪⠍⠊⠱⠑⠀⠵⠁⠓⠇⠑⠝⠂⠀⠙⠬⠀⠛⠑⠤ ⠇⠑⠛⠑⠝⠞⠇⠊⠹⠀⠋⠳⠗⠀⠍⠑⠓⠗⠋⠁⠹⠑⠀⠧⠕⠝⠀⠞⠡⠎⠑⠝⠙ ⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠧⠑⠗⠎⠬⠓⠞⠀⠍⠁⠝⠀⠍⠊⠞ ⠩⠝⠑⠍⠀⠾⠗⠊⠹⠀⠁⠇⠎⠀⠕⠃⠑⠗⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠶⠎⠬⠓⠑ ⠦⠼⠓⠀⠩⠝⠋⠁⠹⠑⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠤ ⠅⠬⠗⠥⠝⠛⠑⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠘⠊⠠⠂⠀⠘⠊⠧⠠⠂⠀⠘⠍⠙⠉⠉⠉⠭⠭⠧ \[\text{I, IV, MDCCCXXV}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠊⠠⠂⠀⠭⠧⠊ \[\text{i, xvi}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠘⠭⠒⠀⠶⠼⠁⠚⠄⠚⠚⠚ \[\text{\overline{X}} =10\;000\] ⠃⠩⠎⠏⠬⠇⠀⠼⠃⠄⠃⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠨⠒⠘⠊⠧⠀⠶⠼⠙⠚⠚⠚ \[\text{\overline{IV}} =4000\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠃⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠙ ⠼⠉⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠥⠝⠙⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠼⠉⠄⠁⠀⠧⠕⠗⠃⠑⠍⠑⠗⠅⠥⠝⠛⠀⠵⠥⠗ ⠀⠀⠀⠀⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠿⠠⠀⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝ ⠿⠘⠀⠀⠩⠝⠀⠕⠙⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝ ⠿⠨⠀⠀⠩⠝⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠂⠀⠛⠑⠋⠕⠇⠛⠞⠀⠧⠕⠝⠀⠩⠝⠑⠍ ⠀⠀⠀⠀⠀⠀⠕⠙⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠝⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝ ⠿⠰⠀⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠿⠐⠀⠀⠼⠂⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠤ ⠀⠀⠀⠀⠀⠀⠝⠥⠝⠛ ⠿⠸⠀⠀⠼⠆⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠤ ⠀⠀⠀⠀⠀⠀⠝⠥⠝⠛ ⠀⠀⠕⠓⠝⠑⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠎⠊⠝⠙⠀⠁⠇⠇⠑⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠇⠁⠞⠩⠝⠊⠱⠑ ⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠊⠝⠀⠊⠓⠗⠑⠝⠀⠍⠕⠙⠑⠗⠝⠑⠝ ⠱⠗⠊⠋⠞⠋⠕⠗⠍⠑⠝⠄⠀⠇⠁⠞⠩⠝⠊⠱⠑⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝ ⠥⠝⠙⠀⠋⠗⠑⠍⠙⠑⠀⠃⠵⠺⠄⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑ ⠃⠥⠹⠾⠁⠃⠑⠝⠀⠍⠳⠎⠎⠑⠝⠀⠑⠝⠞⠎⠏⠗⠑⠹⠑⠝⠙⠀⠛⠑⠅⠑⠝⠝⠤ ⠵⠩⠹⠝⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠤⠼⠉⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠑ ⠼⠉⠄⠃⠀⠛⠗⠕⠮⠤⠀⠥⠝⠙⠀⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛ ⠀⠀⠀⠀⠀⠇⠁⠞⠩⠝⠊⠱⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠿⠠⠀⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝ ⠿⠘⠀⠀⠩⠝⠀⠕⠙⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝ ⠿⠨⠀⠀⠩⠝⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠂⠀⠛⠑⠋⠕⠇⠛⠞⠀⠧⠕⠝⠀⠩⠝⠑⠍ ⠀⠀⠀⠀⠀⠀⠕⠙⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠝⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠊⠾⠀⠙⠬⠀⠛⠗⠕⠮⠤ ⠥⠝⠙⠀⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛⠀⠧⠕⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠎⠑⠓⠗ ⠑⠝⠞⠱⠩⠙⠑⠝⠙⠀⠋⠳⠗⠀⠙⠑⠗⠑⠝⠀⠃⠑⠙⠣⠞⠥⠝⠛⠄⠀⠑⠎ ⠍⠥⠎⠎⠀⠙⠁⠓⠑⠗⠀⠥⠝⠃⠑⠙⠊⠝⠛⠞⠀⠡⠋⠀⠩⠝⠙⠣⠞⠊⠛⠅⠩⠞ ⠛⠑⠁⠹⠞⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠛⠗⠥⠝⠙⠎⠜⠞⠵⠇⠊⠹⠀⠊⠾⠀⠋⠳⠗⠀⠇⠁⠞⠩⠝⠊⠱⠑⠀⠅⠇⠩⠝⠤ ⠃⠥⠹⠾⠁⠃⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠅⠩⠝⠑ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠑⠗⠋⠕⠗⠙⠑⠗⠇⠊⠹⠄⠀⠚⠑⠙⠕⠹⠀⠍⠳⠎⠤ ⠎⠑⠝⠀⠎⠬⠀⠙⠕⠗⠞⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠀⠿⠠⠀⠀⠛⠑⠤ ⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠺⠕⠀⠎⠬⠀⠡⠋⠀⠛⠗⠥⠝⠙ ⠙⠑⠗⠀⠧⠕⠗⠓⠑⠗⠛⠑⠓⠑⠝⠙⠑⠝⠀⠵⠩⠹⠑⠝⠀⠁⠇⠎⠀⠑⠞⠺⠁⠎ ⠁⠝⠙⠑⠗⠑⠎⠀⠛⠑⠙⠣⠞⠑⠞⠀⠺⠑⠗⠙⠑⠝⠀⠅⠪⠝⠝⠑⠝⠂⠀⠵⠥⠍ ⠃⠩⠎⠏⠬⠇⠒ ⠠⠤⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠁⠀⠃⠊⠎⠀⠚⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠝⠁⠹ ⠀⠀⠀⠊⠝⠀⠾⠁⠝⠙⠁⠗⠙⠵⠊⠋⠋⠑⠗⠝⠀⠛⠑⠱⠗⠬⠃⠑⠝⠑⠝⠀⠵⠁⠓⠤ ⠀⠀⠀⠇⠑⠝⠒⠀⠎⠬⠀⠺⠳⠗⠙⠑⠝⠀⠁⠇⠎⠀⠺⠩⠞⠑⠗⠑⠀⠵⠊⠋⠋⠑⠗⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠋ ⠀⠀⠀⠛⠑⠇⠑⠎⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠠⠤⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠝⠁⠹⠀⠙⠑⠍⠀⠃⠗⠥⠹⠑⠝⠙⠑⠵⠩⠤ ⠀⠀⠀⠹⠑⠝⠒⠀⠙⠁⠎⠀⠃⠗⠥⠹⠑⠝⠙⠑⠵⠩⠹⠑⠝⠀⠊⠾⠀⠊⠙⠑⠝⠞⠊⠱ ⠀⠀⠀⠍⠊⠞⠀⠙⠑⠍⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗ ⠀⠀⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠄ ⠠⠤⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠝⠁⠹⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠑⠝ ⠀⠀⠀⠼⠙⠂⠑⠀⠀⠿⠘⠀⠀⠁⠝⠛⠑⠅⠳⠝⠙⠊⠛⠞⠑⠝⠀⠛⠗⠕⠮⠤ ⠀⠀⠀⠃⠥⠹⠾⠁⠃⠑⠝⠒⠀⠎⠬⠀⠅⠪⠝⠝⠞⠑⠝⠀⠁⠇⠎⠀⠺⠩⠞⠑⠗⠑ ⠀⠀⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝⠀⠊⠝⠞⠑⠗⠏⠗⠑⠞⠬⠗⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠁⠇⠇⠑⠀⠝⠊⠹⠞⠀⠁⠝⠛⠑⠅⠳⠝⠙⠊⠛⠞⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠎⠊⠝⠙⠀⠁⠇⠎⠀⠇⠁⠞⠩⠝⠊⠱⠑⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠵⠥ ⠇⠑⠎⠑⠝⠄ ⠀⠀⠊⠍⠀⠊⠝⠞⠑⠗⠑⠎⠎⠑⠀⠙⠑⠗⠀⠩⠝⠙⠣⠞⠊⠛⠅⠩⠞⠀⠺⠊⠗⠙ ⠑⠍⠏⠋⠕⠓⠇⠑⠝⠂⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠇⠬⠃⠑⠗⠀⠩⠝⠍⠁⠇ ⠵⠥⠀⠕⠋⠞⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠀⠿⠠⠀⠀⠁⠇⠎⠀⠩⠝⠍⠁⠇ ⠵⠥⠀⠺⠑⠝⠊⠛⠀⠁⠝⠵⠥⠅⠳⠝⠙⠊⠛⠑⠝⠄ ⠀⠀⠩⠝⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠀⠺⠊⠗⠙⠀⠝⠥⠗⠀⠙⠁⠝⠝⠀⠙⠥⠗⠹ ⠙⠬⠀⠏⠥⠝⠅⠞⠑⠀⠼⠙⠂⠋⠀⠀⠿⠨⠀⠀⠁⠝⠛⠑⠅⠳⠝⠙⠊⠛⠞⠂ ⠺⠑⠝⠝⠀⠊⠓⠍⠀⠍⠊⠝⠙⠑⠾⠑⠝⠎⠀⠩⠝⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑ ⠋⠕⠇⠛⠞⠄⠀⠎⠕⠝⠾⠀⠎⠊⠝⠙⠀⠩⠝⠵⠑⠇⠝⠑⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠀⠊⠍⠍⠑⠗⠀⠍⠊⠞⠀⠙⠑⠝⠀⠏⠥⠝⠅⠞⠑⠝⠀⠼⠙⠂⠑⠀⠀⠿⠘ ⠁⠝⠵⠥⠅⠳⠝⠙⠊⠛⠑⠝⠄ ⠀⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛⠀⠙⠑⠗⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠋⠳⠗⠀⠛⠗⠕⠮⠤⠀⠃⠵⠺⠄⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠺⠊⠗⠙⠀⠡⠋⠤ ⠛⠑⠓⠕⠃⠑⠝⠀⠙⠥⠗⠹⠒ ⠠⠤⠀⠙⠁⠎⠀⠝⠜⠹⠾⠑⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠛ ⠠⠤⠀⠙⠁⠎⠀⠵⠩⠇⠑⠝⠑⠝⠙⠑⠠⠤⠀⠡⠮⠑⠗⠀⠃⠩⠍⠀⠵⠩⠇⠑⠝⠤ ⠀⠀⠀⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠏⠥⠝⠅⠞⠀⠼⠙⠀⠀⠿⠈ ⠠⠤⠀⠙⠁⠎⠀⠝⠜⠹⠾⠑⠀⠡⠮⠑⠗⠁⠇⠏⠓⠁⠃⠑⠞⠊⠱⠑ ⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠵⠩⠹⠑⠝⠀⠚⠑⠛⠇⠊⠹⠑⠗⠀⠁⠗⠞ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠚⠠⠁⠠⠂⠀⠼⠁⠚⠅⠠⠂⠀⠼⠑⠝⠠⠂⠀⠼⠉⠘⠃ \[10a, 10k, 5n, 3B\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠐⠷⠘⠁⠃⠉⠙⠠⠂⠀⠘⠑⠋⠛⠓⠠⠂⠀⠘⠊⠚⠅⠇⠐⠾ \[\{ABCD, EFGH, IJKL\}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠘⠁⠃⠉⠠⠙ \[ABCd\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠃⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠨⠁⠃⠨⠉⠙ \[AbCd\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠃⠀⠘⠃⠼⠚⠑ ⠇⠪⠎⠥⠝⠛⠎⠍⠑⠝⠛⠑⠀⠀⠘⠇⠡⠘⠁ Lösungsmenge $L_{A}$ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠓ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠃⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠆⠼⠁⠀⠖⠝⠀⠳⠀⠼⠑⠰⠠⠭ \[\frac{1 +n}{5}x\] ⠼⠉⠄⠉⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠿⠰⠀⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠙⠬⠀⠛⠗⠬⠹⠊⠱⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠊⠝⠀⠙⠑⠗ ⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠿⠁⠀⠀⠁⠇⠏⠓⠁ ⠿⠃⠀⠀⠃⠑⠞⠁ ⠿⠛⠀⠀⠛⠁⠍⠍⠁ ⠿⠙⠀⠀⠙⠑⠇⠞⠁ ⠿⠑⠀⠀⠑⠏⠎⠊⠇⠕⠝ ⠿⠵⠀⠀⠵⠑⠞⠁ ⠿⠚⠀⠀⠑⠞⠁ ⠿⠓⠀⠀⠞⠓⠑⠞⠁ ⠿⠊⠀⠀⠊⠕⠞⠁ ⠿⠅⠀⠀⠅⠁⠏⠏⠁ ⠿⠇⠀⠀⠇⠁⠍⠃⠙⠁ ⠿⠍⠀⠀⠍⠽ ⠿⠝⠀⠀⠝⠽ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠃⠤⠼⠉⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠊ ⠿⠭⠀⠀⠭⠊ ⠿⠕⠀⠀⠕⠍⠊⠅⠗⠕⠝ ⠿⠏⠀⠀⠏⠊ ⠿⠗⠀⠀⠗⠓⠕ ⠿⠎⠀⠀⠎⠊⠛⠍⠁ ⠿⠞⠀⠀⠞⠡ ⠿⠥⠀⠀⠽⠏⠎⠊⠇⠕⠝ ⠿⠋⠀⠀⠏⠓⠊ ⠿⠉⠀⠀⠹⠊ ⠿⠽⠀⠀⠏⠎⠊ ⠿⠺⠀⠀⠕⠍⠑⠛⠁ ⠿⠧⠀⠀⠙⠊⠛⠁⠍⠍⠁ ⠿⠟⠀⠀⠅⠕⠏⠏⠁ ⠀⠀⠙⠬⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠙⠑⠎⠀⠛⠗⠬⠹⠊⠱⠑⠝⠀⠁⠇⠏⠓⠁⠃⠑⠞⠎ ⠺⠑⠗⠙⠑⠝⠀⠍⠊⠞⠀⠙⠑⠝⠎⠑⠇⠃⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠵⠩⠤ ⠹⠑⠝⠀⠺⠬⠀⠙⠬⠀⠙⠑⠎⠀⠇⠁⠞⠩⠝⠊⠱⠑⠝⠀⠁⠇⠏⠓⠁⠃⠑⠞⠎ ⠛⠑⠱⠗⠬⠃⠑⠝⠄⠀⠙⠁⠓⠑⠗⠀⠍⠳⠎⠎⠑⠝⠀⠛⠗⠬⠹⠊⠱⠑ ⠃⠥⠹⠾⠁⠃⠑⠝⠀⠡⠎⠙⠗⠳⠉⠅⠇⠊⠹⠀⠁⠇⠎⠀⠎⠕⠇⠹⠑⠀⠛⠑⠤ ⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠛⠗⠬⠹⠊⠱⠑⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠙⠥⠗⠹ ⠙⠁⠎⠀⠵⠩⠹⠑⠝⠀⠀⠿⠰⠀⠀⠁⠝⠛⠑⠅⠳⠝⠙⠊⠛⠞⠄⠀⠃⠩⠀⠛⠗⠬⠤ ⠹⠊⠱⠑⠝⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝⠀⠺⠊⠗⠙⠀⠵⠥⠎⠜⠞⠵⠇⠊⠹⠀⠙⠬ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠛⠗⠕⠮⠱⠗⠩⠃⠥⠝⠛⠀⠀⠿⠘ ⠃⠵⠺⠄⠀⠀⠿⠨⠀⠀⠵⠺⠊⠱⠑⠝⠀⠙⠬⠎⠑⠍⠀⠵⠩⠹⠑⠝⠀⠥⠝⠙⠀⠙⠑⠍ ⠑⠗⠾⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠛⠑⠎⠑⠞⠵⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠚ ⠀⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠀⠛⠊⠇⠞⠀⠋⠳⠗⠀⠩⠝⠑⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠙⠑⠗ ⠛⠗⠕⠮⠱⠗⠩⠃⠥⠝⠛⠀⠙⠥⠗⠹⠀⠏⠥⠝⠅⠞⠑⠀⠼⠙⠂⠑⠀⠀⠿⠘ ⠃⠵⠺⠄⠀⠏⠥⠝⠅⠞⠑⠀⠼⠙⠂⠋⠀⠀⠿⠨⠀⠀⠥⠝⠙⠀⠋⠳⠗⠀⠁⠇⠇⠑ ⠃⠥⠹⠾⠁⠃⠑⠝⠀⠃⠊⠎⠒ ⠠⠤⠀⠵⠥⠍⠀⠝⠜⠹⠾⠑⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠵⠩⠇⠑⠝⠤ ⠀⠀⠀⠑⠝⠙⠑⠠⠤⠀⠡⠮⠑⠗⠀⠃⠩⠍⠀⠵⠩⠇⠑⠝⠞⠗⠑⠝⠝⠵⠩⠤ ⠀⠀⠀⠹⠑⠝⠀⠀⠿⠈⠀⠀⠃⠵⠺⠄ ⠠⠤⠀⠵⠥⠍⠀⠝⠜⠹⠾⠑⠝⠀⠡⠮⠑⠗⠁⠇⠏⠓⠁⠃⠑⠞⠊⠱⠑⠝ ⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠵⠩⠹⠑⠝⠀⠚⠑⠛⠇⠊⠹⠑⠗⠀⠁⠗⠞⠄ ⠀⠀⠝⠁⠹⠀⠩⠝⠑⠗⠀⠋⠕⠇⠛⠑⠀⠧⠕⠝⠀⠛⠗⠬⠹⠊⠱⠑⠝⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠀⠇⠩⠞⠑⠝⠀⠙⠁⠓⠑⠗⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠑⠝⠀⠋⠳⠗ ⠛⠗⠕⠮⠤⠀⠃⠵⠺⠄⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠀⠿⠘ ⠕⠙⠑⠗⠀⠀⠿⠨⠀⠀⠃⠵⠺⠄⠀⠀⠿⠠⠀⠀⠩⠝⠑⠝⠀⠺⠑⠹⠎⠑⠇⠀⠵⠥ ⠇⠁⠞⠩⠝⠊⠱⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠩⠝⠄⠀⠋⠁⠇⠇⠎⠀⠊⠝⠝⠑⠗⠤ ⠓⠁⠇⠃⠀⠩⠝⠑⠗⠀⠋⠕⠇⠛⠑⠀⠧⠕⠝⠀⠛⠗⠬⠹⠊⠱⠑⠝⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠀⠩⠝⠑⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠛⠗⠕⠮⠤⠀⠃⠵⠺⠄ ⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠝⠕⠞⠺⠑⠝⠙⠊⠛⠀⠺⠊⠗⠙⠂⠀⠍⠥⠎⠎⠀⠙⠬ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠀⠿⠰ ⠺⠬⠙⠑⠗⠓⠕⠇⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠓⠊⠝⠺⠩⠎⠒ ⠀⠀⠙⠁⠎⠀⠋⠗⠳⠓⠑⠗⠑⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗ ⠛⠗⠬⠹⠊⠱⠑⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝⠀⠀⠿⠸⠀⠀⠺⠊⠗⠙⠀⠝⠊⠹⠞ ⠍⠑⠓⠗⠀⠁⠝⠛⠑⠺⠑⠝⠙⠑⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠁ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠨⠺⠊⠝⠅⠑⠇⠀⠰⠁⠠⠂⠀⠰⠃⠠⠂⠀⠰⠛ \[\text{Winkel} \; \alpha, \; \beta, \; \gamma\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠃ ⠀⠀⠙⠬⠀⠎⠥⠍⠍⠑⠀⠙⠑⠗⠀⠺⠊⠝⠅⠑⠇⠀⠀⠰⠁⠃⠛⠀⠀⠑⠗⠛⠊⠃⠞ ⠼⠁⠓⠚⠸⠈⠴⠄ Die Summe der Winkel $\alpha \beta \gamma$ ergibt $180^{\circ}$. ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠰⠗⠡⠨⠉⠥ \[\rho_{Cu}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠧⠀⠶⠆⠼⠃⠰⠏⠠⠗⠀⠳⠀⠘⠞⠰ \[v =\frac{2\pi r}{T}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠘⠁⠡⠘⠕⠀⠶⠰⠏⠗⠠⠗⠀⠖⠼⠃⠰⠏⠠⠗⠓ \[A_O =\pi \rho r +2 \pi rh\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠃ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠑⠌⠈⠖⠣⠰⠁⠠⠞⠈⠖⠰⠃⠜ \[e^{+(\alpha t +\beta)}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠛ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠋⠳⠗⠀⠙⠬⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠙⠑⠎⠀⠛⠗⠕⠮⠤ ⠃⠥⠹⠾⠁⠃⠑⠝⠎⠀⠙⠑⠇⠞⠁⠀⠁⠇⠎⠀⠙⠊⠋⠋⠑⠗⠑⠝⠵⠵⠩⠹⠑⠝ ⠎⠬⠓⠑⠀⠦⠼⠉⠄⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠜⠓⠝⠇⠊⠹⠑⠀⠎⠽⠍⠃⠕⠤ ⠇⠑⠴⠄⠶ ⠀⠀⠀⠘⠏⠀⠶⠆⠯⠙⠘⠑⠀⠳⠀⠯⠙⠠⠞⠰⠠ ⠀⠀⠀⠀⠀⠶⠆⠯⠙⠘⠺⠀⠳⠀⠯⠙⠠⠞⠰ \[P =\frac{\Delta E}{\Delta t} =\frac{\Delta W}{\Delta t}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠓ ⠀⠀⠀⠰⠺⠀⠶⠆⠯⠙⠰⠋⠀⠳⠀⠯⠙⠠⠞⠰ \[\omega =\frac{\Delta \varphi}{\Delta t}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠉⠀⠘⠃⠼⠚⠊ ⠀⠀⠀⠘⠋⠡⠘⠺⠀⠶⠼⠁⠆⠉⠡⠰⠺⠱⠰⠗⠨⠁⠧⠌⠆ \[F_{W} =\frac{1}{2}c_{\omega}\rho Av^{2}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠉ ⠓⠊⠝⠺⠩⠎⠒ ⠀⠀⠙⠬⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠧⠕⠝⠀⠑⠞⠁⠂⠀⠞⠓⠑⠞⠁⠀⠥⠝⠙ ⠹⠊⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠺⠩⠹⠞⠀⠧⠕⠝ ⠙⠑⠗⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠊⠝⠀⠶⠁⠇⠞⠤⠠⠶⠛⠗⠬⠹⠊⠱⠀⠁⠃⠄ ⠙⠬⠀⠳⠃⠇⠊⠹⠑⠝⠀⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠙⠬⠎⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠓⠁⠃⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠁⠝⠙⠑⠗⠑ ⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠥⠝⠙⠀⠙⠑⠗⠑⠝⠀⠧⠑⠗⠺⠑⠝⠙⠥⠝⠛⠀⠋⠳⠗ ⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠃⠊⠗⠛⠞⠀⠛⠗⠕⠮⠑⠀⠧⠑⠗⠤ ⠺⠑⠹⠎⠇⠥⠝⠛⠎⠛⠑⠋⠁⠓⠗⠄⠀⠊⠝⠀⠞⠑⠭⠞⠑⠝⠂⠀⠊⠝⠀⠙⠑⠝⠑⠝ ⠙⠬⠎⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠎⠕⠺⠕⠓⠇⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠁⠇⠎⠀⠡⠹⠀⠊⠝⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠧⠕⠗⠅⠕⠍⠍⠑⠝⠂⠀⠍⠥⠎⠎ ⠙⠬⠀⠁⠃⠺⠩⠹⠑⠝⠙⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠊⠝⠀⠩⠝⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠑⠝⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠀⠑⠗⠇⠌⠤ ⠞⠑⠗⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠁⠇⠞⠏⠓⠊⠇⠕⠇⠕⠛⠊⠱⠑⠝⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛ ⠺⠑⠗⠙⠑⠝⠀⠋⠕⠇⠛⠑⠝⠙⠑⠀⠵⠩⠹⠑⠝⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠒ ⠿⠱⠀⠀⠑⠞⠁ ⠿⠹⠀⠀⠞⠓⠑⠞⠁ ⠿⠯⠀⠀⠹⠊ ⠀⠀⠙⠁⠎⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠁⠇⠏⠓⠁⠃⠑⠞⠂⠀⠙⠁⠎⠀⠊⠍ ⠍⠕⠙⠑⠗⠝⠑⠝⠀⠛⠗⠬⠹⠑⠝⠇⠁⠝⠙⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠊⠗⠙⠂ ⠺⠩⠹⠞⠀⠃⠩⠀⠍⠑⠓⠗⠑⠗⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠧⠕⠝⠀⠙⠑⠝⠑⠝ ⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠞⠑⠭⠞⠤⠀⠥⠝⠙⠀⠠⠤⠍⠁⠞⠓⠑⠤ ⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠁⠃⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠙ ⠼⠉⠄⠙⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑ ⠀⠀⠀⠀⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠿⠐⠀⠀⠼⠂⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠤ ⠀⠀⠀⠀⠀⠀⠝⠥⠝⠛ ⠿⠸⠀⠀⠼⠆⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠤ ⠀⠀⠀⠀⠀⠀⠝⠥⠝⠛ ⠀⠀⠺⠩⠎⠑⠝⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠧⠕⠗⠇⠁⠛⠑⠝⠀⠃⠑⠤ ⠎⠕⠝⠙⠑⠗⠑⠀⠙⠗⠥⠉⠅⠋⠕⠗⠍⠑⠝⠀⠡⠋⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠃⠑⠙⠣⠞⠥⠝⠛⠑⠝⠀⠓⠊⠝⠂⠀⠍⠳⠎⠎⠑⠝⠀⠙⠬ ⠥⠝⠞⠑⠗⠱⠬⠙⠑⠀⠡⠹⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠅⠑⠝⠝⠞⠇⠊⠹⠀⠛⠑⠍⠁⠹⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠙⠬⠎⠀⠊⠾⠀⠙⠑⠗⠀⠋⠁⠇⠇⠂⠀⠺⠑⠝⠝⠀⠃⠩⠎⠏⠬⠇⠎⠺⠩⠎⠑ ⠃⠑⠾⠊⠍⠍⠞⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠊⠝⠀⠋⠑⠞⠞⠙⠗⠥⠉⠅⠀⠕⠙⠑⠗ ⠛⠁⠗⠀⠊⠝⠀⠛⠕⠞⠊⠱⠑⠗⠀⠙⠗⠥⠉⠅⠋⠕⠗⠍⠀⠑⠗⠱⠩⠝⠑⠝⠂ ⠑⠞⠺⠁⠀⠥⠍⠀⠎⠬⠀⠁⠇⠎⠀⠧⠑⠅⠞⠕⠗⠑⠝⠀⠡⠎⠵⠥⠵⠩⠹⠝⠑⠝⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠞⠗⠁⠙⠊⠞⠊⠕⠝⠑⠇⠇⠑⠝⠀⠙⠗⠥⠉⠅⠎⠑⠞⠵⠥⠝⠛ ⠋⠳⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠺⠑⠗⠅⠑⠀⠺⠑⠗⠙⠑⠝⠀⠩⠝⠓⠩⠞⠑⠝ ⠥⠝⠙⠀⠅⠥⠗⠵⠺⠪⠗⠞⠑⠗⠀⠙⠥⠗⠹⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠍⠊⠞⠤ ⠞⠑⠇⠀⠧⠕⠝⠀⠧⠁⠗⠊⠁⠃⠇⠑⠝⠀⠁⠃⠛⠑⠓⠕⠃⠑⠝⠄⠀⠊⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠺⠑⠗⠙⠑⠝⠀⠩⠝⠓⠩⠤ ⠞⠑⠝⠀⠥⠝⠙⠀⠅⠥⠗⠵⠺⠪⠗⠞⠑⠗⠀⠕⠓⠝⠑⠓⠊⠝⠀⠃⠑⠎⠕⠝⠙⠑⠗⠎ ⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠀⠶⠎⠬⠓⠑⠀⠦⠼⠙⠄⠁⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠑ ⠧⠕⠝⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠝⠴⠀⠥⠝⠙⠀⠦⠼⠉⠄⠋⠀⠅⠥⠗⠵⠤ ⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑⠴⠶⠄⠀⠑⠎⠀⠊⠾⠀⠙⠁⠓⠑⠗⠀⠝⠊⠹⠞⠀⠑⠗⠤ ⠋⠕⠗⠙⠑⠗⠇⠊⠹⠂⠀⠩⠝⠑⠝⠀⠑⠧⠑⠝⠞⠥⠑⠇⠇⠑⠝⠀⠅⠥⠗⠎⠊⠧⠤ ⠙⠗⠥⠉⠅⠀⠋⠳⠗⠀⠧⠁⠗⠊⠁⠃⠇⠑⠝⠀⠺⠬⠙⠑⠗⠵⠥⠛⠑⠃⠑⠝⠄ ⠀⠀⠋⠳⠗⠀⠙⠬⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠗⠀⠞⠽⠤ ⠏⠕⠛⠗⠁⠋⠊⠱⠑⠗⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠑⠝⠀⠁⠇⠇⠑⠗⠀⠁⠗⠞⠑⠝ ⠾⠑⠓⠑⠝⠀⠙⠬⠀⠃⠩⠙⠑⠝⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠏⠥⠝⠅⠞⠀⠼⠑⠀⠀⠿⠐⠀⠀⠥⠝⠙⠀⠏⠥⠝⠅⠞⠑⠀⠼⠙⠂⠑⠂⠋⠀⠀⠿⠸ ⠵⠥⠗⠀⠋⠗⠩⠑⠝⠀⠧⠑⠗⠋⠳⠛⠥⠝⠛⠄⠀⠥⠍⠀⠺⠑⠇⠹⠑⠀⠁⠗⠞ ⠧⠕⠝⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠀⠑⠎⠀⠎⠊⠹⠀⠊⠍⠀⠩⠝⠵⠑⠇⠋⠁⠇⠇ ⠓⠁⠝⠙⠑⠇⠞⠂⠀⠍⠥⠎⠎⠀⠊⠝⠀⠩⠝⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠤ ⠞⠑⠹⠝⠊⠱⠑⠝⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠀⠑⠗⠇⠌⠞⠑⠗⠞⠀⠺⠑⠗⠙⠑⠝ ⠶⠎⠬⠓⠑⠀⠦⠼⠁⠄⠉⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠴⠶⠄⠀⠙⠁⠀⠙⠁⠎⠀⠵⠩⠹⠑⠝ ⠏⠥⠝⠅⠞⠑⠀⠼⠙⠂⠑⠂⠋⠀⠀⠿⠸⠀⠀⠡⠹⠀⠩⠝⠓⠩⠞⠑⠝⠀⠁⠝⠅⠳⠝⠤ ⠙⠊⠛⠞⠂⠀⠊⠾⠀⠋⠳⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠙⠁⠎⠀⠵⠩⠹⠑⠝ ⠏⠥⠝⠅⠞⠀⠼⠑⠀⠀⠿⠐⠀⠀⠵⠥⠀⠑⠍⠏⠋⠑⠓⠇⠑⠝⠀⠶⠎⠬⠓⠑ ⠦⠼⠙⠄⠁⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠤ ⠇⠑⠝⠴⠶⠄ ⠀⠀⠙⠁⠎⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠙⠬⠀⠃⠑⠤ ⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠀⠾⠑⠓⠞ ⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠧⠕⠗⠀⠙⠑⠍⠀⠑⠗⠾⠑⠝⠀⠃⠑⠞⠗⠑⠋⠋⠑⠝⠤ ⠙⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠃⠵⠺⠄⠀⠧⠕⠗⠀⠙⠑⠗⠀⠑⠧⠑⠝⠞⠥⠑⠇⠤ ⠇⠑⠝⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠥⠝⠙⠐⠂⠕⠙⠑⠗⠀⠛⠗⠕⠮⠤⠐⠂⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛⠄ ⠀⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠛⠊⠇⠞⠀⠋⠳⠗⠀⠙⠬⠀⠑⠧⠑⠝⠞⠥⠤ ⠑⠇⠇⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠙⠁⠗⠡⠋⠀⠋⠕⠇⠛⠑⠝⠙⠑⠝⠀⠵⠩⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠋ ⠹⠑⠝⠀⠀⠿⠰⠀⠀⠶⠛⠗⠬⠹⠊⠱⠶⠂⠀⠀⠿⠘⠀⠀⠕⠙⠑⠗⠀⠀⠿⠨ ⠃⠵⠺⠄⠀⠀⠿⠠⠀⠀⠶⠛⠗⠕⠮⠤⠀⠥⠝⠙⠀⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛⠶⠠⠤ ⠃⠵⠺⠄⠀⠅⠕⠍⠃⠊⠝⠁⠞⠊⠕⠝⠑⠝⠀⠙⠁⠧⠕⠝⠠⠤⠀⠥⠝⠙⠀⠋⠳⠗ ⠁⠇⠇⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠃⠊⠎⠒ ⠠⠤⠀⠵⠥⠍⠀⠝⠜⠹⠾⠑⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠠⠤⠀⠵⠥⠍⠀⠵⠩⠇⠑⠝⠑⠝⠙⠑⠠⠤⠀⠡⠮⠑⠗⠀⠃⠩⠍⠀⠵⠩⠇⠑⠝⠤ ⠀⠀⠀⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠀⠿⠈ ⠠⠤⠀⠵⠥⠍⠀⠝⠜⠹⠾⠑⠝⠀⠡⠮⠑⠗⠁⠇⠏⠓⠁⠃⠑⠞⠊⠱⠑⠝ ⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠵⠩⠹⠑⠝⠀⠚⠑⠛⠇⠊⠹⠑⠗⠀⠁⠗⠞ ⠀⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠙⠳⠗⠋⠑⠝⠀⠡⠹⠀⠧⠕⠗ ⠁⠝⠙⠑⠗⠑⠝⠀⠵⠩⠹⠑⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠾⠑⠤ ⠓⠑⠝⠂⠀⠙⠑⠝⠑⠝⠀⠙⠥⠗⠹⠀⠩⠝⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠁⠃⠤ ⠓⠑⠃⠥⠝⠛⠀⠁⠝⠙⠑⠗⠑⠀⠃⠑⠙⠣⠞⠥⠝⠛⠑⠝⠀⠵⠥⠅⠕⠍⠍⠑⠝⠄ ⠊⠝⠀⠙⠬⠎⠑⠍⠀⠋⠁⠇⠇⠀⠛⠊⠇⠞⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠒ ⠠⠤⠀⠧⠕⠗⠀⠩⠝⠑⠍⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠙⠬⠀⠛⠁⠝⠵⠑ ⠀⠀⠀⠵⠁⠓⠇ ⠠⠤⠀⠙⠊⠗⠑⠅⠞⠀⠧⠕⠗⠀⠩⠝⠑⠗⠀⠵⠊⠋⠋⠑⠗⠀⠝⠥⠗⠀⠋⠳⠗ ⠀⠀⠀⠙⠬⠎⠑⠀⠩⠝⠑⠀⠵⠊⠋⠋⠑⠗ ⠠⠤⠀⠧⠕⠗⠀⠁⠇⠇⠑⠝⠀⠁⠝⠙⠑⠗⠑⠝⠀⠎⠽⠍⠃⠕⠇⠑⠝⠀⠇⠑⠙⠊⠛⠤ ⠀⠀⠀⠇⠊⠹⠀⠋⠳⠗⠀⠙⠁⠎⠀⠙⠁⠗⠡⠋⠀⠋⠕⠇⠛⠑⠝⠙⠑⠀⠎⠽⠍⠃⠕⠇ ⠀⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠙⠥⠗⠹⠀⠏⠥⠝⠅⠞⠀⠼⠑⠀⠀⠿⠐ ⠙⠁⠗⠋⠀⠝⠊⠹⠞⠀⠃⠩⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠝⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞ ⠺⠑⠗⠙⠑⠝⠂⠀⠙⠁⠀⠏⠥⠝⠅⠞⠀⠼⠑⠀⠙⠬⠀⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛ ⠩⠝⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠎⠀⠩⠝⠇⠩⠞⠑⠞⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠚⠄⠃ ⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠴⠶⠄⠀⠙⠑⠎⠀⠺⠩⠞⠑⠗⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠛ ⠊⠾⠀⠎⠬⠀⠙⠕⠗⠞⠀⠝⠊⠹⠞⠀⠑⠗⠇⠡⠃⠞⠂⠀⠺⠕⠀⠎⠬⠀⠁⠇⠎ ⠞⠩⠇⠀⠩⠝⠑⠎⠀⠎⠽⠍⠃⠕⠇⠎⠀⠛⠑⠇⠑⠎⠑⠝⠀⠺⠑⠗⠙⠑⠝ ⠅⠪⠝⠝⠞⠑⠄⠀⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇⠀⠃⠊⠇⠙⠑⠞⠀⠩⠝⠀⠧⠕⠗⠁⠝⠤ ⠛⠑⠾⠑⠇⠇⠞⠑⠗⠀⠏⠥⠝⠅⠞⠀⠼⠑⠀⠊⠝⠀⠅⠕⠍⠃⠊⠝⠁⠞⠊⠕⠝ ⠍⠊⠞⠀⠑⠉⠅⠊⠛⠑⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠿⠷⠀⠀⠃⠵⠺⠄⠀⠀⠿⠾ ⠝⠊⠹⠞⠀⠑⠞⠺⠁⠀⠋⠑⠞⠞⠀⠛⠑⠙⠗⠥⠉⠅⠞⠑⠂⠀⠎⠕⠝⠙⠑⠗⠝ ⠛⠑⠱⠺⠩⠋⠞⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠿⠐⠷⠀⠀⠃⠵⠺⠄⠀⠀⠿⠐⠾ ⠶⠎⠬⠓⠑⠀⠦⠼⠋⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠴⠶⠄ ⠀⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠙⠥⠗⠹⠀⠀⠿⠸⠀⠀⠙⠁⠗⠋⠀⠙⠁⠤ ⠛⠑⠛⠑⠝⠀⠙⠕⠗⠞⠀⠝⠊⠹⠞⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠺⠕ ⠎⠬⠀⠍⠊⠞⠀⠙⠑⠍⠀⠑⠗⠾⠑⠝⠀⠞⠩⠇⠀⠩⠝⠑⠗⠀⠥⠝⠞⠑⠗⠑⠝ ⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠝⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠧⠑⠗⠺⠑⠹⠤ ⠎⠑⠇⠞⠀⠺⠑⠗⠙⠑⠝⠀⠅⠪⠝⠝⠞⠑⠀⠶⠎⠬⠓⠑⠀⠦⠼⠓⠄⠃⠀⠵⠥⠤ ⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠴⠶⠄ ⠀⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠙⠥⠗⠹⠀⠏⠥⠝⠅⠞⠑ ⠼⠙⠂⠑⠂⠋⠀⠀⠿⠸⠀⠀⠊⠾⠀⠙⠊⠗⠑⠅⠞⠀⠧⠕⠗⠀⠩⠝⠑⠗⠀⠩⠝⠤ ⠵⠑⠇⠝⠑⠝⠀⠵⠊⠋⠋⠑⠗⠀⠩⠝⠑⠗⠀⠵⠁⠓⠇⠀⠝⠊⠹⠞⠀⠵⠥⠇⠜⠎⠤ ⠎⠊⠛⠂⠀⠥⠍⠀⠧⠑⠗⠺⠑⠹⠎⠇⠥⠝⠛⠑⠝⠀⠍⠊⠞⠀⠙⠑⠗⠀⠁⠝⠅⠳⠝⠤ ⠙⠊⠛⠥⠝⠛⠀⠩⠝⠑⠗⠀⠩⠝⠓⠩⠞⠀⠧⠕⠗⠵⠥⠃⠣⠛⠑⠝⠄ ⠀⠀⠺⠊⠗⠙⠀⠇⠑⠙⠊⠛⠇⠊⠹⠀⠩⠝⠀⠞⠩⠇⠀⠩⠝⠑⠎⠀⠡⠎⠙⠗⠥⠉⠅⠎ ⠓⠑⠗⠧⠕⠗⠛⠑⠓⠕⠃⠑⠝⠂⠀⠙⠁⠍⠊⠞⠀⠊⠝⠀⠩⠝⠑⠗⠀⠑⠗⠇⠌⠞⠑⠤ ⠗⠥⠝⠛⠀⠙⠁⠗⠡⠋⠀⠩⠝⠛⠑⠛⠁⠝⠛⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠅⠁⠝⠝⠂ ⠑⠍⠏⠋⠬⠓⠇⠞⠀⠎⠊⠹⠀⠙⠬⠀⠞⠑⠹⠝⠊⠅⠀⠙⠑⠗⠀⠓⠕⠗⠊⠵⠕⠝⠤ ⠞⠁⠇⠑⠝⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠥⠝⠛⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠑⠄⠃ ⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠥⠝⠛⠑⠝⠀⠥⠝⠙ ⠇⠬⠛⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠴⠶⠄⠀⠋⠳⠗⠀⠓⠑⠗⠧⠕⠗⠵⠥⠓⠑⠤ ⠃⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠏⠁⠁⠗⠑⠀⠅⠪⠝⠝⠑⠝⠀⠙⠬⠀⠎⠏⠑⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠓ ⠵⠊⠑⠇⠇⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠧⠑⠗⠺⠑⠝⠤ ⠙⠥⠝⠛⠀⠋⠊⠝⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠋⠄⠉⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠙⠀⠘⠃⠼⠚⠁ ⠀⠀⠺⠬⠀⠇⠡⠞⠑⠝⠀⠙⠑⠗⠀⠧⠑⠅⠞⠕⠗⠀⠀⠐⠧⠒⠂⠀⠀⠥⠝⠙ ⠙⠬⠀⠾⠗⠑⠉⠅⠑⠀⠀⠐⠘⠁⠃⠠⠢ Wie lauten der Vektor $\vec{\mathbf{v}}$ und die Strecke $\mathbf{AB}$? ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠙⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠐⠼⠙⠃⠃⠋ ⠕⠙⠑⠗ ⠀⠀⠀⠸⠼⠙⠃⠃⠋ \[\mathbf{4226}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠙⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠁⠐⠃⠉⠐⠙⠑⠠⠂⠀⠼⠉⠑⠐⠋⠐⠋ \[1\mathbf{2}3\mathbf{4}5, \; 35\mathbf{66}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠊ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠙⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠨⠒⠂⠐⠘⠁⠃ \[\vec{\mathbf{AB}}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠙⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠨⠨⠒⠂⠸⠘⠋⠡⠸⠘⠛⠨⠱ \[\vec{\mathbf{F}_{\mathbf{G}}}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠙⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠸⠒⠐⠘⠁⠃⠠⠂⠀⠨⠸⠒⠐⠘⠁⠡⠂⠐⠘⠃⠡⠂⠨⠱ \[\underline{\mathbf{AB}}, \; \underline{\mathbf{A}_{1} \mathbf{B}_{1}}\] ⠼⠉⠄⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠜⠓⠝⠇⠊⠹⠑⠀⠎⠽⠍⠃⠕⠇⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠯⠙⠀⠀⠀⠛⠗⠕⠮⠑⠎⠀⠙⠑⠇⠞⠁⠀⠁⠇⠎⠀⠙⠊⠋⠋⠑⠗⠑⠝⠵⠵⠩⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠹⠑⠝ ⠿⠯⠎⠀⠀⠀⠎⠥⠍⠍⠑⠝⠵⠩⠹⠑⠝ ⠿⠯⠏⠀⠀⠀⠏⠗⠕⠙⠥⠅⠞⠵⠩⠹⠑⠝ ⠿⠯⠑⠀⠀⠀⠊⠾⠀⠑⠇⠑⠍⠑⠝⠞⠀⠧⠕⠝ ⠿⠈⠙⠀⠀⠀⠗⠥⠝⠙⠑⠎⠀⠙⠀⠶⠋⠳⠗⠀⠏⠁⠗⠞⠊⠑⠇⠇⠑⠀⠁⠃⠇⠩⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠞⠥⠝⠛⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠙⠤⠼⠉⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠚ ⠿⠈⠓⠀⠀⠀⠓⠤⠟⠥⠑⠗⠂⠀⠗⠑⠙⠥⠵⠬⠗⠞⠑⠀⠏⠇⠁⠝⠉⠅⠱⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠅⠕⠝⠾⠁⠝⠞⠑ ⠿⠈⠏⠀⠀⠀⠺⠩⠑⠗⠾⠗⠁⠮⠱⠑⠎⠀⠏ ⠿⠨⠨⠝⠀⠀⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠝⠁⠞⠳⠗⠇⠊⠹⠑⠝⠀⠵⠁⠓⠇⠑⠝ ⠿⠨⠨⠵⠀⠀⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠛⠁⠝⠵⠑⠝⠀⠵⠁⠓⠇⠑⠝ ⠿⠨⠨⠟⠀⠀⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠗⠁⠞⠊⠕⠝⠁⠇⠑⠝⠀⠵⠁⠓⠇⠑⠝ ⠿⠨⠨⠗⠀⠀⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠗⠑⠑⠇⠇⠑⠝⠀⠵⠁⠓⠇⠑⠝ ⠿⠨⠨⠉⠀⠀⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠅⠕⠍⠏⠇⠑⠭⠑⠝⠀⠵⠁⠓⠇⠑⠝ ⠿⠨⠨⠓⠀⠀⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠟⠥⠁⠞⠑⠗⠝⠊⠕⠝⠑⠝ ⠿⠨⠨⠏⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠛⠑⠗⠁⠙⠑ ⠀⠀⠋⠳⠗⠀⠧⠬⠇⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠎⠽⠍⠃⠕⠇⠑⠂⠀⠙⠑⠤ ⠗⠑⠝⠀⠋⠕⠗⠍⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠡⠋⠀⠩⠝⠤ ⠵⠑⠇⠝⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠵⠥⠗⠳⠉⠅⠛⠑⠓⠑⠝⠂⠀⠙⠬⠀⠁⠃⠑⠗ ⠝⠊⠹⠞⠀⠍⠊⠞⠀⠙⠬⠎⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠊⠙⠑⠝⠞⠊⠱ ⠎⠊⠝⠙⠂⠀⠛⠊⠃⠞⠀⠑⠎⠀⠩⠛⠑⠝⠑⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠎⠽⠍⠤ ⠃⠕⠇⠑⠄ ⠀⠀⠎⠕⠀⠓⠁⠃⠑⠝⠀⠙⠬⠀⠎⠽⠍⠃⠕⠇⠑⠀⠋⠳⠗⠀⠎⠥⠍⠍⠑⠀⠥⠝⠙ ⠏⠗⠕⠙⠥⠅⠞⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠙⠬⠀⠋⠕⠗⠍ ⠙⠑⠗⠀⠛⠗⠬⠹⠊⠱⠑⠝⠀⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝⠀⠎⠊⠛⠍⠁⠀⠥⠝⠙ ⠏⠊⠄⠀⠎⠬⠀⠺⠑⠗⠙⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠡⠋⠛⠗⠥⠝⠙⠀⠊⠓⠗⠑⠗⠀⠛⠗⠪⠮⠑⠀⠚⠑⠙⠕⠹⠀⠝⠊⠹⠞⠀⠺⠬ ⠙⠬⠎⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠃⠑⠓⠁⠝⠙⠑⠇⠞⠂⠀⠎⠕⠝⠙⠑⠗⠝⠀⠚⠑⠤ ⠺⠩⠇⠎⠀⠍⠊⠞⠀⠙⠑⠍⠀⠋⠳⠗⠀⠎⠬⠀⠋⠑⠾⠛⠑⠇⠑⠛⠞⠑⠝⠀⠎⠽⠍⠤ ⠃⠕⠇⠀⠀⠿⠯⠎⠀⠀⠋⠳⠗⠀⠎⠥⠍⠍⠑⠀⠥⠝⠙⠀⠀⠿⠯⠏⠀⠀⠋⠳⠗ ⠏⠗⠕⠙⠥⠅⠞⠀⠛⠑⠱⠗⠬⠃⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠁⠄⠁⠀⠋⠥⠝⠅⠤ ⠞⠊⠕⠝⠑⠝⠴⠶⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠁ ⠀⠀⠙⠬⠀⠗⠑⠙⠥⠵⠬⠗⠞⠑⠀⠏⠇⠁⠝⠉⠅⠱⠑⠀⠅⠕⠝⠾⠁⠝⠞⠑⠀⠶⠡⠹ ⠁⠇⠎⠀⠦⠓⠤⠟⠥⠑⠗⠴⠀⠃⠑⠅⠁⠝⠝⠞⠶⠀⠺⠊⠗⠙⠀⠊⠝⠀⠙⠑⠗ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠙⠥⠗⠹⠀⠩⠝⠀⠙⠥⠗⠹⠛⠑⠾⠗⠊⠹⠑⠝⠑⠎ ⠅⠇⠩⠝⠑⠎⠀⠓⠂⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠙⠥⠗⠹ ⠙⠬⠀⠋⠑⠾⠑⠀⠵⠩⠹⠑⠝⠋⠕⠇⠛⠑⠀⠀⠿⠈⠓⠀⠀⠁⠃⠛⠑⠃⠊⠇⠙⠑⠞⠄ ⠁⠝⠁⠇⠕⠛⠀⠺⠊⠗⠙⠀⠃⠩⠀⠏⠁⠗⠞⠊⠑⠇⠇⠑⠝⠀⠁⠃⠇⠩⠞⠥⠝⠛⠑⠝ ⠙⠁⠎⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠛⠑⠱⠺⠥⠝⠛⠑⠝⠑ ⠅⠇⠩⠝⠑⠀⠙⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠍⠊⠞⠀⠀⠿⠈⠙ ⠺⠬⠙⠑⠗⠛⠑⠛⠑⠃⠑⠝⠄ ⠀⠀⠡⠹⠀⠙⠬⠀⠍⠊⠞⠀⠙⠕⠏⠏⠑⠇⠾⠗⠊⠹⠑⠝⠀⠛⠑⠵⠩⠹⠝⠑⠞⠑⠝ ⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝⠀⠋⠳⠗⠀⠙⠬⠀⠾⠁⠝⠙⠁⠗⠙⠍⠑⠝⠛⠑⠝ ⠺⠑⠗⠙⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠙⠥⠗⠹⠀⠩⠛⠑⠤ ⠝⠑⠂⠀⠚⠑⠺⠩⠇⠎⠀⠡⠎⠀⠙⠗⠩⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝ ⠃⠑⠾⠑⠓⠑⠝⠙⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠺⠬⠙⠑⠗⠛⠑⠛⠑⠤ ⠃⠑⠝⠒⠀⠀⠿⠨⠨⠝⠀⠀⠋⠳⠗⠀⠝⠁⠞⠳⠗⠇⠊⠹⠑⠀⠵⠁⠓⠤ ⠇⠑⠝⠂⠀⠀⠿⠨⠨⠵⠀⠀⠋⠳⠗⠀⠛⠁⠝⠵⠑⠀⠵⠁⠓⠇⠑⠝⠂⠀⠀⠿⠨⠨⠟ ⠋⠳⠗⠀⠗⠁⠞⠊⠕⠝⠁⠇⠑⠀⠵⠁⠓⠇⠑⠝⠀⠥⠎⠺⠄⠀⠥⠝⠙⠀⠛⠑⠇⠞⠑⠝ ⠁⠇⠎⠀⠡⠮⠑⠗⠁⠇⠏⠓⠁⠃⠑⠞⠊⠱⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠶⠎⠬⠓⠑ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠃⠀⠘⠃⠼⠚⠊⠠⠶⠄⠀⠃⠩⠀⠃⠑⠙⠁⠗⠋⠀⠅⠪⠝⠝⠑⠝ ⠺⠩⠞⠑⠗⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠝⠁⠹⠀⠙⠬⠎⠑⠍⠀⠍⠥⠾⠑⠗⠀⠛⠑⠤ ⠃⠊⠇⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠙⠬⠀⠝⠣⠱⠪⠏⠋⠥⠝⠛⠀⠍⠥⠎⠎⠀⠊⠝ ⠙⠑⠝⠀⠧⠕⠗⠃⠑⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠕⠙⠑⠗⠀⠙⠑⠝⠀⠁⠝⠍⠑⠗⠤ ⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛ ⠑⠗⠇⠌⠞⠑⠗⠞⠀⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠄⠉⠀⠁⠝⠍⠑⠗⠤ ⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠤ ⠛⠥⠝⠛⠴⠶⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠃ ⠀⠀⠙⠁⠛⠑⠛⠑⠝⠀⠊⠾⠀⠙⠑⠗⠀⠛⠗⠬⠹⠊⠱⠑⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑ ⠏⠊⠀⠝⠊⠹⠞⠀⠧⠕⠝⠀⠙⠑⠝⠀⠁⠝⠙⠑⠗⠑⠝⠀⠛⠗⠬⠹⠊⠱⠑⠝ ⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠵⠥⠀⠥⠝⠞⠑⠗⠱⠩⠙⠑⠝⠀⠥⠝⠙⠀⠊⠾ ⠑⠝⠞⠎⠏⠗⠑⠹⠑⠝⠙⠀⠙⠑⠝⠀⠗⠑⠛⠑⠇⠝⠀⠋⠳⠗⠀⠙⠬ ⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠛⠗⠬⠹⠊⠱⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠵⠥⠀⠃⠑⠤ ⠓⠁⠝⠙⠑⠇⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠉⠄⠉⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠑⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠈⠓⠀⠶⠓⠳⠼⠃⠰⠏ \[\hbar =\frac{text{h}}{2\pi}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠑⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠨⠨⠝⠀⠶⠐⠷⠼⠁⠠⠂⠼⠃⠠⠂⠼⠉⠠⠂⠼⠙⠠⠂⠼⠑⠠⠂⠈ ⠀⠀⠀⠀⠀⠄⠄⠄⠐⠾⠠⠆⠀⠨⠨⠝⠡⠴⠀⠶⠐⠷⠼⠚⠠⠂⠼⠁⠠⠂⠈ ⠀⠀⠀⠀⠀⠼⠃⠠⠂⠼⠉⠠⠂⠼⠙⠠⠂⠼⠑⠠⠂⠄⠄⠄⠐⠾ \[\mathbb{N} =\{1,2,3,4,5,...\}; \; \mathbb{N}_{0} =\{0,1,2,3,4,5,...\}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠑⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠰⠍⠯⠙⠵⠣⠆⠈⠙⠌⠆⠰⠽⠀⠳⠀⠈⠙⠞⠌⠆⠰⠜⠠ ⠀⠀⠀⠀⠀⠢⠢⠘⠞⠣⠆⠈⠙⠌⠆⠰⠽⠀⠳⠀⠈⠙⠵⠌⠆⠰⠜⠯⠙⠵ \[\mu \Delta z \left( \frac{\partial^{2}\psi}{\partial ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠉ t^{2}} \right) \approx T \left( \frac{\partial^{2}\psi}{\partial z^{2}} \right) \Delta z\] ⠼⠉⠄⠋⠀⠅⠥⠗⠵⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠻⠀⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠅⠥⠗⠵⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠎⠊⠝⠙⠀⠧⠬⠇⠑⠀⠙⠑⠋⠊⠤ ⠝⠬⠗⠞⠑⠀⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠥⠎⠺⠄⠀⠙⠑⠎⠀⠪⠋⠞⠑⠗⠑⠝⠀⠊⠝ ⠁⠃⠛⠑⠅⠳⠗⠵⠞⠑⠗⠀⠋⠕⠗⠍⠀⠁⠝⠵⠥⠞⠗⠑⠋⠋⠑⠝⠂⠀⠎⠕⠀⠵⠥⠍ ⠃⠩⠎⠏⠬⠇⠀⠦⠎⠊⠝⠴⠀⠋⠳⠗⠀⠙⠬⠀⠎⠊⠝⠥⠎⠤⠋⠥⠝⠅⠞⠊⠕⠝⠄ ⠙⠬⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠙⠬⠎⠑⠗⠀⠅⠥⠗⠵⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑ ⠺⠑⠗⠙⠑⠝⠀⠕⠋⠞⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠀⠧⠕⠝⠀⠧⠁⠗⠊⠁⠃⠇⠑⠝ ⠥⠎⠺⠄⠀⠥⠝⠞⠑⠗⠱⠬⠙⠑⠝⠂⠀⠥⠍⠀⠎⠬⠀⠝⠊⠹⠞⠀⠍⠊⠞⠩⠝⠁⠝⠤ ⠙⠑⠗⠀⠵⠥⠀⠧⠑⠗⠺⠑⠹⠎⠑⠇⠝⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠑⠭⠊⠾⠬⠗⠑⠝⠀⠋⠳⠗⠀⠑⠞⠇⠊⠹⠑⠀⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠩⠛⠑⠝⠑ ⠎⠽⠍⠃⠕⠇⠑⠂⠀⠙⠬⠀⠍⠊⠞⠀⠙⠑⠍⠀⠵⠩⠹⠑⠝⠀⠀⠿⠫⠀⠀⠃⠑⠤ ⠛⠊⠝⠝⠑⠝⠄⠀⠊⠝⠀⠙⠬⠎⠑⠍⠀⠋⠁⠇⠇⠀⠊⠾⠀⠑⠃⠑⠝⠋⠁⠇⠇⠎ ⠩⠝⠑⠀⠧⠑⠗⠺⠑⠹⠎⠇⠥⠝⠛⠀⠍⠊⠞⠀⠧⠁⠗⠊⠁⠃⠇⠑⠝⠀⠡⠎⠛⠑⠤ ⠱⠇⠕⠎⠎⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠑⠤⠼⠉⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠙ ⠀⠀⠅⠕⠍⠍⠑⠝⠀⠅⠥⠗⠵⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑⠀⠧⠕⠗⠂⠀⠙⠬⠀⠊⠝ ⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠝⠕⠹⠀⠝⠊⠹⠞⠀⠙⠑⠋⠊⠝⠬⠗⠞ ⠎⠊⠝⠙⠂⠀⠅⠪⠝⠝⠑⠝⠀⠎⠬⠀⠍⠊⠞⠀⠙⠑⠍⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝ ⠋⠳⠗⠀⠅⠥⠗⠵⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑⠀⠀⠿⠻⠀⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞ ⠺⠑⠗⠙⠑⠝⠄⠀⠃⠑⠛⠊⠝⠝⠞⠀⠩⠝⠀⠅⠥⠗⠵⠺⠕⠗⠞⠀⠍⠊⠞⠀⠩⠝⠑⠍ ⠛⠗⠕⠮⠃⠥⠹⠾⠁⠃⠑⠝⠂⠀⠊⠾⠀⠙⠁⠎⠀⠑⠝⠞⠎⠏⠗⠑⠹⠑⠝⠙⠑ ⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠀⠿⠨⠀⠀⠃⠵⠺⠄⠀⠀⠿⠘⠀⠀⠥⠝⠤ ⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠝⠁⠹⠀⠙⠑⠍⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠵⠥ ⠎⠑⠞⠵⠑⠝⠄⠀⠙⠁⠎⠀⠅⠥⠗⠵⠺⠕⠗⠞⠀⠍⠥⠎⠎⠀⠧⠕⠝⠀⠙⠁⠗⠡⠋⠤ ⠋⠕⠇⠛⠑⠝⠙⠑⠝⠀⠁⠗⠛⠥⠍⠑⠝⠞⠑⠝⠀⠥⠎⠺⠄⠀⠙⠥⠗⠹⠀⠩⠝ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠩⠝⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠶⠵⠁⠓⠇⠵⠩⠹⠑⠝⠂⠀⠅⠇⠩⠝⠱⠗⠩⠃⠵⠩⠹⠑⠝⠀⠕⠄⠜⠄⠶⠀⠁⠃⠤ ⠛⠑⠛⠗⠑⠝⠵⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠑⠎⠀⠇⠬⠛⠞⠀⠊⠍⠀⠑⠗⠍⠑⠎⠎⠑⠝⠀⠙⠑⠎⠀⠳⠃⠑⠗⠞⠗⠁⠤ ⠛⠑⠝⠙⠑⠝⠀⠕⠙⠑⠗⠀⠱⠗⠩⠃⠑⠝⠙⠑⠝⠂⠀⠅⠥⠗⠵⠺⠪⠗⠞⠑⠗⠂ ⠋⠳⠗⠀⠙⠬⠀⠩⠛⠑⠝⠑⠂⠀⠍⠊⠞⠀⠙⠑⠍⠀⠵⠩⠹⠑⠝⠀⠀⠿⠫⠀⠀⠃⠑⠤ ⠛⠊⠝⠝⠑⠝⠙⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠑⠭⠊⠾⠬⠗⠑⠝⠂⠀⠑⠃⠑⠝⠎⠕⠀⠵⠥ ⠱⠗⠩⠃⠑⠝⠄ ⠀⠀⠙⠁⠎⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠀⠿⠻⠀⠀⠋⠊⠝⠙⠑⠞⠀⠡⠹ ⠋⠳⠗⠀⠙⠬⠀⠩⠝⠇⠩⠞⠥⠝⠛⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠗⠀⠛⠑⠕⠍⠑⠞⠗⠊⠤ ⠱⠑⠗⠀⠎⠽⠍⠃⠕⠇⠑⠀⠧⠑⠗⠺⠑⠝⠙⠥⠝⠛⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠙⠄⠁ ⠛⠑⠕⠍⠑⠞⠗⠊⠱⠑⠀⠎⠽⠍⠃⠕⠇⠑⠴⠶⠄⠀⠊⠝⠀⠙⠬⠎⠑⠝⠀⠎⠽⠍⠤ ⠃⠕⠇⠑⠝⠀⠋⠕⠇⠛⠞⠀⠡⠋⠀⠙⠁⠎⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠚⠑⠤ ⠙⠕⠹⠀⠝⠬⠀⠩⠝⠀⠃⠥⠹⠾⠁⠃⠑⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠑ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠋⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠚⠀⠻⠍⠕⠙⠀⠼⠓⠀⠶⠼⠃ \[10 \; \text{mod} \; 8 =2\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠋⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠁⠀⠻⠘⠕⠗⠀⠼⠁⠀⠶⠼⠁⠀⠁⠃⠑⠗⠠ ⠀⠀⠀⠀⠀⠼⠁⠀⠻⠘⠭⠕⠗⠀⠼⠁⠀⠶⠼⠚ \[1 \; \text{OR} \; 1 =1 \; \text{aber} \; 1 \; \text{XOR} \; 1 =0\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠋⠀⠘⠃⠼⠚⠉ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠋⠳⠗⠀⠙⠬⠀⠳⠃⠇⠊⠹⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛ ⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠀⠼⠁⠙⠄⠃⠀⠘⠃⠼⠚⠁⠠⠶ ⠀⠀⠀⠻⠎⠊⠝⠼⠉⠚⠸⠈⠴⠀⠶⠼⠚⠂⠑ \[\sin 30^{\circ} =0,5\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠋⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠫⠇⠡⠂⠴⠠⠭⠀⠶⠫⠇⠠⠭ ⠕⠙⠑⠗ ⠀⠀⠀⠻⠇⠕⠛⠡⠂⠴⠠⠭⠀⠶⠻⠇⠛⠠⠭ \[\log_{10}x =\lg x\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠋ ⠼⠉⠄⠛⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠠⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝ ⠀⠀⠅⠕⠍⠍⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠧⠕⠗⠂⠀⠍⠥⠎⠎⠀⠊⠓⠝⠑⠝⠀⠙⠑⠗⠀⠏⠥⠝⠅⠞ ⠼⠋⠀⠀⠿⠠⠀⠀⠧⠕⠗⠁⠝⠛⠑⠾⠑⠇⠇⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠥⠍⠀⠎⠬ ⠧⠕⠝⠀⠁⠝⠙⠑⠗⠑⠝⠀⠎⠽⠍⠃⠕⠇⠑⠝⠀⠵⠥⠀⠥⠝⠞⠑⠗⠱⠩⠙⠑⠝⠄ ⠙⠑⠗⠀⠎⠁⠞⠵⠏⠥⠝⠅⠞⠀⠀⠿⠄⠀⠀⠎⠕⠺⠬⠀⠙⠑⠗⠀⠛⠑⠙⠁⠝⠤ ⠅⠑⠝⠾⠗⠊⠹⠀⠀⠿⠠⠤⠀⠀⠎⠊⠝⠙⠀⠓⠬⠗⠧⠕⠝⠀⠡⠎⠛⠑⠝⠕⠍⠤ ⠍⠑⠝⠂⠀⠙⠁⠀⠅⠩⠝⠑⠀⠧⠑⠗⠺⠑⠹⠎⠇⠥⠝⠛⠎⠛⠑⠋⠁⠓⠗ ⠃⠑⠾⠑⠓⠞⠄ ⠀⠀⠡⠹⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠙⠑⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠺⠊⠗⠙⠀⠙⠑⠗ ⠏⠥⠝⠅⠞⠀⠼⠋⠀⠧⠕⠗⠁⠝⠛⠑⠾⠑⠇⠇⠞⠄⠀⠗⠥⠝⠙⠑⠀⠞⠑⠭⠞⠤ ⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠿⠶⠀⠀⠑⠗⠱⠩⠝⠑⠝⠀⠎⠕⠍⠊⠞⠀⠚⠑⠺⠩⠇⠎ ⠍⠊⠞⠀⠩⠝⠑⠍⠀⠏⠥⠝⠅⠞⠀⠼⠋⠄⠀⠕⠃⠺⠕⠓⠇⠀⠃⠩⠀⠑⠉⠅⠊⠛⠑⠝ ⠞⠑⠭⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠿⠠⠶⠀⠀⠩⠝⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠃⠑⠤ ⠗⠩⠞⠎⠀⠃⠑⠾⠁⠝⠙⠞⠩⠇⠀⠙⠑⠎⠀⠎⠽⠍⠃⠕⠇⠎⠀⠊⠾⠂⠀⠍⠳⠎⠤ ⠎⠑⠝⠀⠎⠬⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠺⠩⠞⠑⠗⠑⠝⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠁⠝⠤ ⠛⠑⠅⠳⠝⠙⠊⠛⠞⠀⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠋⠄⠋⠀⠞⠑⠭⠞⠤ ⠅⠇⠁⠍⠍⠑⠗⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠴⠶⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠛ ⠼⠉⠄⠓⠀⠞⠑⠭⠞⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠋⠳⠗⠀⠞⠑⠭⠞⠩⠝⠱⠳⠃⠑⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝ ⠏⠁⠎⠎⠁⠛⠑⠝⠀⠺⠊⠗⠙⠀⠊⠝⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇⠀⠊⠝⠀⠙⠬ ⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠛⠑⠺⠑⠹⠎⠑⠇⠞⠄⠀⠙⠑⠝⠝⠕⠹⠀⠙⠳⠗⠋⠑⠝ ⠩⠝⠵⠑⠇⠝⠑⠀⠺⠪⠗⠞⠑⠗⠀⠥⠝⠙⠀⠅⠥⠗⠵⠑⠀⠏⠓⠗⠁⠎⠑⠝⠀⠛⠑⠤ ⠱⠗⠬⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠂⠀⠕⠓⠝⠑⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠱⠗⠊⠋⠞⠀⠵⠥⠀⠧⠑⠗⠇⠁⠎⠎⠑⠝⠄⠀⠙⠁⠝⠝⠀⠍⠥⠎⠎⠀⠃⠁⠎⠊⠎⠤ ⠱⠗⠊⠋⠞⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠺⠊⠗⠙⠀⠙⠬⠀⠛⠗⠕⠮⠱⠗⠩⠃⠥⠝⠛ ⠛⠗⠥⠝⠙⠎⠜⠞⠵⠇⠊⠹⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠂⠀⠎⠕⠀⠡⠹⠀⠃⠩ ⠺⠪⠗⠞⠑⠗⠝⠄⠀⠙⠁⠛⠑⠛⠑⠝⠀⠺⠊⠗⠙⠀⠃⠩⠀⠩⠝⠑⠍⠀⠱⠗⠊⠋⠞⠤ ⠺⠑⠹⠎⠑⠇⠀⠵⠥⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠙⠬⠀⠛⠗⠕⠮⠱⠗⠩⠃⠥⠝⠛ ⠺⠬⠀⠊⠍⠀⠳⠃⠗⠊⠛⠑⠝⠀⠞⠑⠭⠞⠀⠛⠑⠓⠁⠝⠙⠓⠁⠃⠞⠄ ⠀⠀⠝⠕⠗⠍⠁⠇⠑⠗⠺⠩⠎⠑⠀⠛⠑⠓⠞⠀⠙⠑⠍⠀⠞⠑⠭⠞⠀⠩⠝ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠧⠕⠗⠡⠎⠄⠀⠙⠬⠎⠀⠎⠕⠗⠛⠞⠀⠊⠝⠀⠙⠑⠗ ⠗⠑⠛⠑⠇⠀⠙⠁⠋⠳⠗⠂⠀⠙⠁⠎⠎⠀⠑⠗⠀⠝⠊⠹⠞⠀⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇ ⠍⠊⠞⠀⠧⠁⠗⠊⠁⠃⠇⠑⠝⠀⠧⠑⠗⠺⠑⠹⠎⠑⠇⠞⠀⠺⠑⠗⠙⠑⠝ ⠅⠁⠝⠝⠄⠀⠙⠬⠀⠙⠣⠞⠱⠑⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠜⠂⠀⠪⠂⠀⠳⠀⠥⠝⠙ ⠮⠀⠺⠑⠗⠙⠑⠝⠀⠍⠊⠞⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠛⠑⠱⠗⠬⠃⠑⠝⠂ ⠙⠬⠀⠑⠃⠑⠝⠋⠁⠇⠇⠎⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠎⠽⠍⠃⠕⠇⠑ ⠕⠙⠑⠗⠀⠞⠩⠇⠑⠀⠙⠁⠧⠕⠝⠀⠁⠃⠃⠊⠇⠙⠑⠝⠄⠀⠎⠕⠋⠑⠗⠝⠀⠑⠎ ⠎⠊⠹⠀⠥⠍⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠝⠀⠓⠁⠝⠙⠑⠇⠞⠂⠀⠍⠳⠎⠎⠑⠝ ⠎⠬⠀⠊⠝⠀⠅⠗⠊⠞⠊⠱⠑⠝⠀⠎⠊⠞⠥⠁⠞⠊⠕⠝⠑⠝⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞ ⠼⠋⠀⠀⠿⠠⠀⠀⠧⠑⠗⠎⠑⠓⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠓⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠓ ⠀⠀⠎⠕⠇⠁⠝⠛⠑⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠝⠊⠹⠞ ⠧⠑⠗⠇⠁⠎⠎⠑⠝⠀⠺⠊⠗⠙⠂⠀⠃⠑⠙⠁⠗⠋⠀⠑⠎⠀⠃⠩⠍⠀⠵⠩⠇⠑⠝⠤ ⠥⠍⠃⠗⠥⠹⠀⠧⠕⠗⠀⠕⠙⠑⠗⠀⠝⠁⠹⠀⠩⠝⠑⠍⠀⠺⠕⠗⠞⠀⠩⠝⠑⠎ ⠵⠩⠇⠑⠝⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠎⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠄⠃⠀⠞⠗⠑⠝⠝⠑⠝ ⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠡⠎⠤ ⠙⠗⠳⠉⠅⠑⠴⠶⠄ ⠀⠀⠋⠳⠗⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠛⠑⠇⠞⠑⠝⠀⠙⠬⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠤ ⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠳⠃⠇⠊⠹⠑⠝⠀⠗⠑⠛⠑⠇⠝⠄⠀⠎⠬ ⠎⠊⠝⠙⠀⠙⠁⠓⠑⠗⠀⠊⠝⠀⠙⠑⠝⠀⠍⠩⠾⠑⠝⠀⠋⠜⠇⠇⠑⠝⠀⠍⠊⠞ ⠧⠕⠗⠁⠝⠛⠑⠓⠑⠝⠙⠑⠍⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠀⠿⠠⠀⠀⠵⠥⠀⠅⠑⠝⠝⠤ ⠵⠩⠹⠝⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠉⠄⠛⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠓⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠁⠀⠕⠶⠼⠚⠠⠂⠀⠝⠠⠂⠵⠀⠯⠑⠨⠨⠝⠀⠥⠝⠙⠠ ⠀⠀⠀⠀⠀⠝⠀⠔⠶⠼⠁ \[a \geq 0, \; n,z \in \mathbb{N} \; \text{und} \; n \neq 1\] ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠓⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠯⠎⠘⠋⠀⠶⠼⠚⠀⠶⠶⠕⠀⠧⠀⠶⠅⠕⠝⠎⠞⠁⠝⠞ \[\sum F =0 \Rightarrow v =\text{konstant}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠓⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠊ ⠃⠩⠎⠏⠬⠇⠀⠼⠉⠄⠓⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠋⠣⠭⠜⠀⠶⠆⠨⠅⠗⠁⠋⠞⠀⠳⠀⠃⠑⠎⠉⠓⠇⠑⠥⠝⠊⠛⠞⠑⠠ ⠀⠀⠀⠀⠀⠨⠍⠁⠎⠎⠑⠰⠀⠶⠆⠘⠋⠀⠳⠀⠍⠰ \[f(x) =\frac{\text{Kraft}} {\text{beschleunigte Masse}} =\frac{F}{m}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠉⠄⠓⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠚ ⠼⠙⠀⠩⠝⠓⠩⠞⠑⠝ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠼⠙⠄⠁⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝ ⠀⠀⠀⠀⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠸⠀⠀⠅⠑⠝⠝⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑ ⠀⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠝⠀⠺⠊⠗⠙⠀⠙⠁⠎⠀⠩⠝⠓⠩⠞⠑⠝⠤ ⠅⠑⠝⠝⠵⠩⠹⠑⠝⠀⠀⠿⠸⠀⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠧⠕⠗⠁⠝⠤ ⠛⠑⠾⠑⠇⠇⠞⠄⠀⠑⠎⠀⠊⠾⠀⠥⠝⠑⠗⠓⠑⠃⠇⠊⠹⠂⠀⠕⠃⠀⠎⠬⠀⠑⠹⠤ ⠞⠑⠀⠍⠁⠮⠩⠝⠓⠩⠞⠑⠝⠀⠺⠬⠀⠍⠑⠞⠑⠗⠀⠕⠙⠑⠗⠀⠓⠊⠇⠋⠎⠩⠝⠤ ⠓⠩⠞⠑⠝⠀⠺⠬⠀⠏⠗⠕⠵⠑⠝⠞⠀⠙⠁⠗⠾⠑⠇⠇⠑⠝⠄ ⠀⠀⠃⠊⠇⠙⠑⠝⠀⠍⠑⠓⠗⠑⠗⠑⠀⠩⠝⠓⠩⠞⠑⠝⠀⠩⠝⠑⠝⠀⠩⠝⠓⠩⠤ ⠞⠑⠝⠅⠕⠍⠏⠇⠑⠭⠂⠀⠃⠑⠙⠁⠗⠋⠀⠑⠎⠀⠝⠥⠗⠀⠩⠝⠑⠎⠀⠅⠑⠝⠝⠤ ⠵⠩⠹⠑⠝⠎⠂⠀⠎⠕⠇⠁⠝⠛⠑⠀⠙⠑⠗⠀⠅⠕⠍⠏⠇⠑⠭⠀⠝⠊⠹⠞ ⠙⠥⠗⠹⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠺⠑⠗⠞⠑⠀⠥⠝⠞⠑⠗⠃⠗⠕⠤ ⠹⠑⠝⠀⠺⠊⠗⠙⠄ ⠀⠀⠃⠑⠵⠬⠓⠞⠀⠎⠊⠹⠀⠩⠝⠑⠀⠩⠝⠓⠩⠞⠀⠙⠊⠗⠑⠅⠞⠀⠡⠋ ⠩⠝⠑⠝⠀⠺⠑⠗⠞⠂⠀⠺⠊⠗⠙⠀⠎⠬⠀⠍⠊⠞⠀⠙⠑⠍⠀⠧⠕⠗⠁⠝⠤ ⠛⠑⠾⠑⠇⠇⠞⠑⠝⠀⠅⠑⠝⠝⠵⠩⠹⠑⠝⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠁⠝ ⠙⠬⠎⠑⠝⠀⠁⠝⠛⠑⠱⠇⠕⠎⠎⠑⠝⠄⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠊⠝⠀⠩⠝⠑⠗ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠧⠕⠗⠇⠁⠛⠑⠀⠺⠑⠗⠙⠑⠝⠀⠓⠬⠗⠀⠊⠛⠝⠕⠤ ⠗⠬⠗⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠤⠼⠙⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠁ ⠀⠀⠙⠬⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝⠀⠩⠝⠓⠩⠞⠑⠝⠀⠑⠗⠎⠑⠞⠵⠞ ⠙⠬⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠝⠀⠍⠊⠞⠞⠑⠇⠂⠀⠙⠬⠀⠙⠑⠗ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠵⠥⠗⠀⠥⠝⠞⠑⠗⠱⠩⠙⠥⠝⠛⠀⠙⠑⠗⠀⠧⠁⠤ ⠗⠊⠁⠃⠇⠑⠝⠀⠧⠕⠝⠀⠩⠝⠓⠩⠞⠑⠝⠤⠀⠥⠝⠙⠀⠋⠥⠝⠅⠞⠊⠕⠝⠎⠤ ⠎⠽⠍⠃⠕⠇⠑⠝⠀⠵⠥⠗⠀⠧⠑⠗⠋⠳⠛⠥⠝⠛⠀⠾⠑⠓⠑⠝⠄⠀⠥⠍ ⠩⠝⠑⠗⠀⠍⠪⠛⠇⠊⠹⠑⠝⠀⠧⠑⠗⠺⠑⠹⠎⠇⠥⠝⠛⠎⠛⠑⠋⠁⠓⠗ ⠧⠑⠗⠱⠬⠙⠑⠝⠑⠗⠀⠎⠽⠍⠃⠕⠇⠞⠽⠏⠑⠝⠀⠧⠕⠗⠵⠥⠃⠣⠛⠑⠝⠂ ⠃⠑⠙⠬⠝⠞⠀⠎⠊⠹⠀⠙⠬⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠠⠤⠀⠧⠕⠍⠀⠇⠑⠤ ⠎⠑⠝⠙⠑⠝⠀⠕⠋⠞⠀⠝⠥⠗⠀⠥⠝⠃⠑⠺⠥⠎⠎⠞⠀⠺⠁⠓⠗⠛⠑⠝⠕⠍⠤ ⠍⠑⠝⠠⠤⠀⠙⠗⠥⠉⠅⠞⠑⠹⠝⠊⠱⠑⠗⠀⠋⠩⠝⠓⠩⠞⠑⠝⠄⠀⠞⠽⠏⠊⠱⠑ ⠧⠊⠎⠥⠑⠇⠇⠑⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠎⠍⠑⠗⠅⠍⠁⠇⠑⠀⠎⠊⠝⠙ ⠛⠑⠗⠁⠙⠑⠀⠛⠑⠎⠑⠞⠵⠞⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠋⠳⠗⠀⠩⠝⠓⠩⠞⠑⠝ ⠥⠝⠙⠀⠅⠥⠗⠎⠊⠧⠑⠀⠋⠳⠗⠀⠧⠁⠗⠊⠁⠃⠇⠑⠝⠠⠤⠀⠕⠙⠑⠗⠀⠡⠹ ⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠶⠧⠕⠇⠇⠀⠕⠙⠑⠗⠀⠓⠁⠇⠃⠶⠀⠧⠕⠗ ⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠝⠂⠀⠁⠃⠑⠗⠀⠝⠊⠹⠞⠀⠧⠕⠗⠀⠧⠁⠤ ⠗⠊⠁⠃⠇⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠚⠂⠉⠸⠇⠀⠶⠼⠉⠚⠚⠸⠍⠇ \[0,3 \text{l} =300 \text{ml}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠁⠸⠘⠓⠀⠶⠼⠁⠸⠘⠧⠄⠎⠳⠘⠁ \[1 \text{H} =1 \frac{\text{V} \cdot \text{s}}{\text{A}}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠃ ⠼⠙⠄⠃⠀⠏⠗⠕⠵⠑⠝⠞⠂⠀⠏⠗⠕⠍⠊⠇⠇⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠸⠼⠚⠴⠀⠀⠀⠏⠗⠕⠵⠑⠝⠞ ⠿⠸⠼⠚⠴⠴⠀⠀⠏⠗⠕⠍⠊⠇⠇⠑ ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠃⠚⠸⠼⠚⠴⠀⠧⠕⠝⠀⠼⠑⠁⠸⠅⠍ \[20\% \; \text{von} \; 51 \text{km}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠛⠸⠼⠚⠴⠴ \[7 \permil\] ⠼⠙⠄⠉⠀⠺⠊⠝⠅⠑⠇⠤⠀⠥⠝⠙⠀⠞⠑⠍⠏⠑⠗⠁⠞⠥⠗⠍⠁⠮⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠸⠈⠴⠀⠀⠀⠀⠀⠛⠗⠁⠙⠀⠶⠅⠗⠊⠝⠛⠑⠇⠶ ⠿⠸⠈⠔⠀⠀⠀⠀⠀⠍⠊⠝⠥⠞⠑⠀⠶⠾⠗⠊⠹⠶ ⠿⠸⠈⠔⠔⠀⠀⠀⠀⠎⠑⠅⠥⠝⠙⠑⠀⠶⠙⠕⠏⠏⠑⠇⠾⠗⠊⠹⠶ ⠿⠸⠗⠁⠙⠀⠀⠀⠀⠗⠁⠙⠊⠁⠝⠞⠀⠶⠗⠁⠙⠶ ⠿⠸⠗⠁⠙⠌⠆⠀⠀⠟⠥⠁⠙⠗⠁⠞⠗⠁⠙⠊⠁⠝⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠃⠤⠼⠙⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠉ ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠉⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠃⠚⠸⠈⠴ \[120^{\circ}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠉⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠫⠁⠼⠊⠚⠸⠈⠴⠀⠶⠰⠏⠳⠼⠃ \[\arc 90^{\circ} =\frac{\pi}{2}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠉⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠃⠚⠸⠈⠴⠼⠑⠸⠈⠔⠼⠁⠚⠸⠈⠔⠔ ⠕⠙⠑⠗ ⠀⠀⠀⠼⠃⠚⠸⠈⠴⠀⠼⠑⠸⠈⠔⠀⠼⠁⠚⠸⠈⠔⠔ \[20^{\circ} \; 5' \; 10''\] ⠼⠙⠄⠙⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠀⠡⠎⠀⠃⠥⠹⠾⠁⠃⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠅⠵⠑⠝⠞⠵⠩⠹⠑⠝ ⠡⠎⠛⠑⠺⠜⠓⠇⠞⠑⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠀⠡⠎⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝ ⠿⠸⠍⠀⠄⠄⠄⠄⠄⠄⠀⠀⠍⠑⠞⠑⠗ ⠿⠸⠉⠍⠀⠄⠄⠄⠄⠄⠀⠀⠵⠑⠝⠞⠊⠍⠑⠞⠑⠗ ⠿⠸⠍⠍⠀⠄⠄⠄⠄⠄⠀⠀⠍⠊⠇⠇⠊⠍⠑⠞⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠉⠤⠼⠙⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠙ ⠿⠸⠰⠍⠠⠍⠀⠄⠄⠄⠀⠀⠍⠊⠅⠗⠕⠍⠑⠞⠑⠗ ⠿⠸⠘⠧⠀⠄⠄⠄⠄⠄⠀⠀⠧⠕⠇⠞ ⠿⠸⠘⠍⠧⠀⠄⠄⠄⠄⠀⠀⠍⠑⠛⠁⠧⠕⠇⠞ ⠿⠸⠍⠘⠁⠀⠄⠄⠄⠄⠀⠀⠍⠊⠇⠇⠊⠁⠍⠏⠑⠗⠑ ⠿⠸⠰⠍⠘⠺⠀⠄⠄⠄⠀⠀⠍⠊⠅⠗⠕⠺⠁⠞⠞ ⠿⠸⠰⠘⠺⠀⠄⠄⠄⠄⠀⠀⠕⠓⠍ ⠿⠸⠅⠰⠘⠺⠀⠄⠄⠄⠀⠀⠅⠊⠇⠕⠕⠓⠍ ⠿⠸⠨⠓⠵⠀⠄⠄⠄⠄⠀⠀⠓⠑⠗⠞⠵ ⠿⠸⠅⠨⠓⠵⠀⠄⠄⠄⠀⠀⠅⠊⠇⠕⠓⠑⠗⠞⠵ ⠿⠸⠑⠘⠧⠀⠄⠄⠄⠄⠀⠀⠑⠇⠑⠅⠞⠗⠕⠝⠑⠝⠧⠕⠇⠞ ⠿⠸⠨⠍⠑⠘⠧⠀⠀⠕⠙⠑⠗ ⠿⠸⠘⠍⠠⠑⠘⠧⠀⠀⠀⠀⠍⠑⠛⠁⠑⠇⠑⠅⠞⠗⠕⠝⠑⠝⠧⠕⠇⠞ ⠿⠸⠎⠀⠄⠄⠄⠄⠄⠄⠀⠀⠎⠑⠅⠥⠝⠙⠑ ⠿⠸⠎⠑⠉⠀⠄⠄⠄⠄⠀⠀⠎⠑⠅⠥⠝⠙⠑ ⠿⠸⠍⠊⠝⠀⠄⠄⠄⠄⠀⠀⠍⠊⠝⠥⠞⠑ ⠿⠸⠘⠈⠁⠀⠄⠄⠄⠄⠀⠀⠈⠁⠝⠛⠾⠗⠪⠍ ⠀⠀⠙⠬⠀⠃⠥⠹⠾⠁⠃⠑⠝⠂⠀⠙⠬⠀⠙⠁⠎⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇ ⠃⠊⠇⠙⠑⠝⠂⠀⠺⠑⠗⠙⠑⠝⠀⠊⠍⠀⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠙⠁⠎ ⠅⠑⠝⠝⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠓⠩⠞⠑⠝⠀⠝⠁⠹⠀⠙⠑⠝⠀⠳⠃⠇⠊⠤ ⠹⠑⠝⠀⠗⠑⠛⠑⠇⠝⠀⠛⠑⠱⠗⠬⠃⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠉⠀⠃⠥⠹⠾⠁⠤ ⠃⠑⠝⠀⠥⠝⠙⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠴⠶⠄ ⠀⠀⠊⠾⠀⠩⠝⠀⠃⠥⠹⠾⠁⠃⠑⠀⠍⠊⠞⠀⠁⠅⠵⠑⠝⠞⠀⠃⠑⠾⠁⠝⠙⠞⠩⠇ ⠩⠝⠑⠎⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠎⠂⠀⠺⠊⠗⠙⠀⠙⠬⠎⠑⠗⠀⠙⠥⠗⠹ ⠏⠥⠝⠅⠞⠀⠼⠙⠀⠀⠿⠈⠀⠀⠥⠝⠙⠀⠙⠑⠝⠀⠛⠗⠥⠝⠙⠃⠥⠹⠾⠁⠃⠑⠝ ⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠑ ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠙⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠸⠁⠞⠍⠀⠶⠼⠁⠚⠁⠂⠉⠃⠑⠸⠅⠨⠏⠁ \[1 \text{atm} =101,325 \text{kPa}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠙⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠁⠸⠨⠓⠵⠀⠶⠼⠁⠸⠎⠌⠤⠂ \[1 \text{Hz} =1 \text{s}^{-1}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠙⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠁⠸⠘⠈⠁⠀⠶⠼⠁⠚⠚⠸⠏⠍⠀⠶⠼⠁⠚⠌⠤⠂⠴⠸⠍ \[1 \AA =100 \text{pm} =10^{-10} \text{m}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠙⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠼⠁⠸⠰⠘⠺⠀⠶⠼⠁⠚⠌⠔⠸⠆⠉⠍⠳⠎⠰ ⠕⠙⠑⠗ ⠀⠀⠀⠼⠁⠸⠰⠘⠺⠀⠶⠼⠁⠚⠌⠔⠸⠉⠍⠳⠎ \[1 \Omega =10^{9} \frac{\text{cm}}{\text{s}}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠙⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠼⠁⠸⠘⠁⠀⠶⠼⠁⠸⠆⠘⠉⠳⠎⠰⠀⠶⠼⠁⠸⠘⠉⠄⠎⠌⠤⠂ ⠕⠙⠑⠗ ⠀⠀⠀⠼⠁⠸⠘⠁⠀⠶⠼⠁⠸⠘⠉⠳⠎⠀⠶⠼⠁⠸⠘⠉⠄⠎⠌⠤⠂ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠋ \[1 \text{A} =1 \frac{\text{C}}{\text{s}} =1 \text{C} \cdot \text{s}^{-1}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠙⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠨⠅⠁⠏⠁⠵⠊⠞⠜⠞⠡⠍⠊⠝⠀⠶⠆⠼⠁⠑⠸⠎⠀⠳⠀⠼⠃⠸⠰⠘⠺⠰⠠ ⠀⠀⠀⠀⠀⠶⠼⠛⠂⠑⠸⠆⠎⠳⠰⠘⠺⠰⠀⠶⠼⠛⠂⠑⠸⠘⠋ ⠕⠙⠑⠗ ⠀⠀⠀⠨⠅⠁⠏⠁⠵⠊⠞⠜⠞⠡⠍⠊⠝⠀⠶⠼⠁⠑⠸⠎⠳⠼⠃⠸⠰⠘⠺⠠ ⠀⠀⠀⠀⠀⠶⠼⠛⠂⠑⠸⠎⠳⠰⠘⠺⠀⠶⠼⠛⠂⠑⠸⠘⠋ \[\text{Kapazität}_{\text{min}} =\frac{15 \text{s}}{2 \Omega} =7,5 \frac{\text{s}}{\Omega} =7,5 \text{F}\] ⠼⠙⠄⠑⠀⠧⠑⠗⠛⠗⠪⠮⠑⠗⠥⠝⠛⠎⠤⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠧⠑⠗⠅⠇⠩⠝⠑⠗⠥⠝⠛⠎⠏⠗⠜⠋⠊⠭⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠧⠑⠗⠛⠗⠪⠮⠑⠗⠥⠝⠛⠎⠤⠀⠥⠝⠙⠀⠧⠑⠗⠅⠇⠩⠝⠑⠗⠥⠝⠛⠎⠤ ⠏⠗⠜⠋⠊⠭⠑⠀⠺⠑⠗⠙⠑⠝⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠂⠀⠥⠍⠀⠩⠝ ⠍⠑⠓⠗⠋⠁⠹⠑⠎⠀⠃⠵⠺⠄⠀⠩⠝⠑⠝⠀⠃⠗⠥⠹⠞⠩⠇⠀⠩⠝⠑⠗ ⠛⠗⠥⠝⠙⠩⠝⠓⠩⠞⠀⠵⠥⠀⠃⠊⠇⠙⠑⠝⠄⠀⠁⠍⠀⠃⠑⠅⠁⠝⠝⠞⠑⠾⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠙⠤⠼⠙⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠛ ⠎⠊⠝⠙⠀⠙⠬⠚⠑⠝⠊⠛⠑⠝⠀⠙⠑⠎⠀⠊⠝⠞⠑⠗⠝⠁⠞⠊⠕⠝⠁⠇⠑⠝ ⠩⠝⠓⠩⠞⠑⠝⠎⠽⠾⠑⠍⠎⠀⠶⠘⠎⠊⠶⠂⠀⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇⠀⠦⠅⠴ ⠶⠦⠅⠊⠇⠕⠤⠴⠂⠀⠙⠁⠎⠀⠞⠡⠎⠑⠝⠙⠋⠁⠹⠑⠀⠙⠑⠗⠀⠛⠗⠥⠝⠙⠤ ⠩⠝⠓⠩⠞⠶⠀⠥⠝⠙⠀⠦⠍⠴⠀⠶⠦⠍⠊⠇⠇⠊⠤⠴⠂⠀⠩⠝⠀⠞⠡⠤ ⠎⠑⠝⠙⠾⠑⠇⠀⠙⠑⠗⠀⠛⠗⠥⠝⠙⠩⠝⠓⠩⠞⠶⠄⠀⠎⠬⠀⠺⠑⠗⠙⠑⠝ ⠁⠇⠎⠀⠃⠑⠾⠁⠝⠙⠞⠩⠇⠀⠙⠑⠗⠀⠩⠝⠓⠩⠞⠀⠃⠑⠓⠁⠝⠙⠑⠇⠞⠄ ⠙⠁⠎⠀⠩⠝⠓⠩⠞⠑⠝⠅⠑⠝⠝⠵⠩⠹⠑⠝⠀⠀⠿⠸⠀⠀⠾⠑⠓⠞⠀⠁⠇⠎⠕ ⠧⠕⠗⠀⠙⠑⠍⠀⠏⠗⠜⠋⠊⠭⠀⠥⠝⠙⠀⠝⠊⠹⠞⠀⠧⠕⠗⠀⠙⠑⠗ ⠛⠗⠥⠝⠙⠩⠝⠓⠩⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠑⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠚⠌⠤⠒⠸⠍⠀⠶⠼⠁⠸⠍⠍⠠ ⠀⠀⠀⠀⠀⠶⠑⠊⠝⠀⠨⠞⠁⠥⠎⠑⠝⠙⠎⠞⠑⠇⠀⠨⠍⠑⠞⠑⠗ \[10^{-3} \text{m} =1 \text{mm} =\text{ein Tausendstel Meter}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠑⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠨⠑⠊⠝⠀⠨⠍⠊⠇⠇⠊⠕⠝⠎⠞⠑⠇⠀⠨⠍⠑⠞⠑⠗⠠ ⠀⠀⠀⠀⠀⠶⠼⠁⠄⠼⠁⠚⠌⠤⠖⠸⠍⠀⠶⠼⠁⠸⠰⠍⠠⠍⠠ ⠀⠀⠀⠀⠀⠠⠶⠼⠁⠀⠨⠍⠊⠅⠗⠕⠍⠑⠞⠑⠗⠠⠶ ⠕⠙⠑⠗ ⠀⠀⠀⠠⠄⠩⠝⠀⠍⠊⠇⠇⠊⠕⠝⠾⠑⠇⠀⠍⠑⠞⠑⠗⠠⠄⠠ ⠀⠀⠀⠀⠀⠶⠼⠁⠄⠼⠁⠚⠌⠤⠖⠸⠍⠀⠶⠼⠁⠸⠰⠍⠠⠍⠠ ⠀⠀⠀⠀⠀⠠⠄⠶⠼⠁⠀⠍⠊⠅⠗⠕⠍⠑⠞⠑⠗⠶⠠⠄ \[\text{Ein Millionstel Meter} =1 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠓ \cdot 10^{-6} \text{m} =1 \text{\mu m} \; \text{(1 Mikrometer)}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠑⠀⠘⠃⠼⠚⠉ ⠀⠀⠎⠏⠩⠹⠑⠗⠅⠁⠏⠁⠵⠊⠞⠜⠞⠀⠧⠕⠝⠀⠠⠭⠀⠞⠑⠗⠁⠃⠽⠞⠑⠖ ⠁⠃⠑⠗⠀⠺⠁⠎⠂⠀⠃⠊⠞⠞⠑⠀⠎⠑⠓⠗⠂⠀⠊⠾⠀⠩⠝⠀⠞⠑⠗⠁⠤ ⠃⠽⠞⠑⠢ ⠀⠀⠀⠼⠁⠸⠘⠞⠨⠃⠽⠞⠑⠀⠶⠼⠁⠄⠚⠚⠚⠸⠘⠛⠨⠃⠽⠞⠑⠠ ⠀⠀⠀⠀⠀⠶⠼⠁⠄⠚⠚⠚⠄⠚⠚⠚⠸⠘⠍⠨⠃⠽⠞⠑⠠ ⠀⠀⠀⠀⠀⠶⠼⠁⠚⠌⠔⠸⠅⠨⠃⠽⠞⠑⠀⠶⠼⠁⠚⠌⠂⠆⠸⠨⠃⠽⠞⠑ Speicherkapazität von x Terabyte! Aber was, bitte sehr, ist ein Terabyte? \[1 \text{TByte} =1\;000 \text{GByte} =1\;000\;000 \text{MByte} =10^{9} \text{kByte} =10^{12} \text{Byte}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠊ ⠼⠙⠄⠋⠀⠺⠜⠓⠗⠥⠝⠛⠎⠎⠽⠍⠃⠕⠇⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠡⠎⠛⠑⠺⠜⠓⠇⠞⠑⠀⠺⠜⠓⠗⠥⠝⠛⠎⠎⠽⠍⠃⠕⠇⠑ ⠿⠸⠈⠑⠀⠀⠀⠀⠀⠣⠗⠕⠀⠶⠣⠗⠕⠵⠕⠝⠑⠶ ⠿⠸⠘⠑⠥⠗⠀⠀⠀⠣⠗⠕⠀⠶⠣⠗⠕⠵⠕⠝⠑⠶ ⠿⠸⠉⠞⠀⠀⠀⠀⠀⠣⠗⠕⠤⠉⠑⠝⠞⠀⠶⠣⠗⠕⠵⠕⠝⠑⠶ ⠿⠸⠨⠋⠗⠄⠀⠀⠀⠋⠗⠁⠝⠅⠑⠝⠀⠶⠱⠺⠩⠵⠶ ⠿⠸⠘⠉⠓⠋⠀⠀⠀⠋⠗⠁⠝⠅⠑⠝⠀⠶⠱⠺⠩⠵⠶ ⠿⠸⠈⠎⠀⠀⠀⠀⠀⠙⠕⠇⠇⠁⠗⠀⠶⠧⠕⠗⠀⠁⠇⠇⠑⠍⠀⠘⠥⠎⠁⠶ ⠿⠸⠘⠥⠎⠙⠀⠀⠀⠙⠕⠇⠇⠁⠗⠀⠶⠘⠥⠎⠁⠶ ⠿⠸⠈⠉⠀⠀⠀⠀⠀⠉⠑⠝⠞⠀⠶⠧⠕⠗⠀⠁⠇⠇⠑⠍⠀⠘⠥⠎⠁⠶ ⠿⠸⠈⠇⠀⠀⠀⠀⠀⠏⠋⠥⠝⠙⠀⠶⠧⠕⠗⠀⠁⠇⠇⠑⠍⠀⠛⠗⠕⠮⠃⠗⠊⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠞⠁⠝⠝⠊⠑⠝⠶ ⠿⠸⠘⠛⠃⠏⠀⠀⠀⠏⠋⠥⠝⠙⠀⠶⠛⠗⠕⠮⠃⠗⠊⠞⠁⠝⠝⠊⠑⠝⠶ ⠿⠸⠘⠞⠇⠀⠀⠀⠀⠏⠋⠥⠝⠙⠐⠂⠇⠊⠗⠁⠀⠶⠞⠳⠗⠅⠩⠶ ⠿⠸⠘⠞⠗⠇⠀⠀⠀⠏⠋⠥⠝⠙⠐⠂⠇⠊⠗⠁⠀⠶⠞⠳⠗⠅⠩⠶ ⠿⠸⠙⠅⠗⠀⠀⠀⠀⠅⠗⠕⠝⠑⠀⠶⠙⠜⠝⠑⠍⠁⠗⠅⠶ ⠿⠸⠘⠙⠅⠅⠀⠀⠀⠅⠗⠕⠝⠑⠀⠶⠙⠜⠝⠑⠍⠁⠗⠅⠶ ⠿⠸⠨⠅⠉⠀⠀⠀⠀⠅⠗⠕⠝⠑⠀⠶⠞⠱⠑⠹⠊⠱⠑⠀⠗⠑⠏⠥⠃⠇⠊⠅⠶ ⠿⠸⠘⠉⠵⠅⠀⠀⠀⠅⠗⠕⠝⠑⠀⠶⠞⠱⠑⠹⠊⠱⠑⠀⠗⠑⠏⠥⠃⠇⠊⠅⠶ ⠿⠸⠊⠘⠗⠀⠀⠀⠀⠗⠥⠏⠊⠑⠀⠶⠊⠝⠙⠊⠑⠝⠶ ⠿⠸⠘⠊⠝⠗⠀⠀⠀⠗⠥⠏⠊⠑⠀⠶⠊⠝⠙⠊⠑⠝⠶ ⠿⠸⠈⠎⠘⠁⠀⠀⠀⠙⠕⠇⠇⠁⠗⠀⠶⠡⠾⠗⠁⠇⠊⠑⠝⠶ ⠿⠸⠘⠁⠥⠙⠀⠀⠀⠙⠕⠇⠇⠁⠗⠀⠶⠡⠾⠗⠁⠇⠊⠑⠝⠶ ⠿⠸⠘⠝⠵⠈⠎⠀⠀⠙⠕⠇⠇⠁⠗⠀⠶⠝⠣⠎⠑⠑⠇⠁⠝⠙⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠚ ⠿⠸⠘⠝⠵⠙⠀⠀⠀⠙⠕⠇⠇⠁⠗⠀⠶⠝⠣⠎⠑⠑⠇⠁⠝⠙⠶ ⠿⠸⠈⠽⠀⠀⠀⠀⠀⠽⠑⠝⠀⠶⠚⠁⠏⠁⠝⠶ ⠿⠸⠘⠚⠏⠽⠀⠀⠀⠽⠑⠝⠀⠶⠚⠁⠏⠁⠝⠶ ⠿⠸⠈⠽⠀⠀⠀⠀⠀⠽⠥⠁⠝⠀⠶⠹⠊⠝⠁⠶ ⠿⠸⠘⠉⠝⠽⠀⠀⠀⠽⠥⠁⠝⠀⠶⠹⠊⠝⠁⠶ ⠀⠀⠺⠜⠓⠗⠥⠝⠛⠎⠎⠽⠍⠃⠕⠇⠑⠝⠀⠺⠊⠗⠙⠀⠺⠬⠀⠁⠝⠙⠑⠗⠑⠝ ⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠝⠀⠙⠁⠎⠀⠩⠝⠓⠩⠞⠑⠝⠅⠑⠝⠝⠵⠩⠤ ⠹⠑⠝⠀⠀⠿⠸⠀⠀⠧⠕⠗⠁⠝⠛⠑⠾⠑⠇⠇⠞⠄ ⠀⠀⠾⠑⠓⠞⠀⠩⠝⠑⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠁⠃⠛⠑⠱⠇⠕⠎⠎⠑⠝⠑ ⠺⠜⠓⠗⠥⠝⠛⠎⠩⠝⠓⠩⠞⠀⠧⠕⠗⠀⠙⠑⠍⠀⠺⠑⠗⠞⠂⠀⠺⠊⠗⠙⠀⠅⠩⠝ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠵⠺⠊⠱⠑⠝⠀⠙⠑⠝⠀⠃⠩⠙⠑⠝⠀⠛⠑⠎⠑⠞⠵⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠋⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠛⠸⠈⠑ \[7 \euro\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠋⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠑⠸⠈⠑⠀⠼⠃⠛⠸⠉⠞ \[5 \euro \; 27 \text{ct}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠋⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠸⠈⠑⠼⠑⠄⠋⠉⠓⠂⠑⠚ \[\euro 5.638,50\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠁ ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠋⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠸⠘⠑⠥⠗⠼⠓⠉⠨⠍⠊⠕⠄ \[\text{EUR} \; 83 \text{Mio.}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠋⠀⠘⠃⠼⠚⠑ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠎⠬⠓⠑⠀⠑⠗⠅⠇⠜⠗⠥⠝⠛⠀⠵⠥⠍⠀⠏⠥⠝⠅⠞⠀⠊⠝ ⠱⠺⠩⠵⠑⠗⠀⠛⠑⠇⠙⠃⠑⠞⠗⠜⠛⠑⠝⠀⠊⠝⠀⠦⠼⠃⠄⠁⠄⠉⠀⠙⠑⠵⠊⠤ ⠍⠁⠇⠃⠗⠳⠹⠑⠴⠄⠶ ⠀⠀⠀⠸⠨⠋⠗⠄⠼⠃⠁⠄⠑⠚ \[\text{Fr.} \; 21.50\] ⠃⠩⠎⠏⠬⠇⠀⠼⠙⠄⠋⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠨⠏⠗⠑⠊⠎⠀⠶⠼⠉⠚⠸⠈⠑⠳⠍⠌⠆ \[\text{Preis} =30 \euro /\text{m}^{2}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠙⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠃ ⠼⠑⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙ ⠀⠀⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠀⠀⠋⠳⠗⠀⠎⠽⠍⠃⠕⠇⠑⠂⠀⠙⠑⠗⠑⠝⠀⠝⠁⠍⠑⠝⠀⠍⠊⠞⠀⠩⠝⠑⠍ ⠾⠑⠗⠝⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠀⠎⠊⠝⠙⠂⠀⠺⠑⠗⠙⠑⠝⠀⠊⠍ ⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠙⠬⠀⠇⠊⠾⠑⠝⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠗⠑⠛⠑⠇⠝ ⠃⠑⠱⠗⠬⠃⠑⠝⠄ ⠘⠁⠀⠓⠌⠋⠊⠛⠀⠛⠑⠃⠗⠡⠹⠞⠑⠀⠵⠩⠹⠑⠝ ⠿⠖⠀⠀⠀⠀⠀⠏⠇⠥⠎ ⠿⠤⠀⠀⠀⠀⠀⠍⠊⠝⠥⠎ ⠿⠄⠀⠀⠀⠀⠀⠍⠁⠇⠀⠶⠏⠥⠝⠅⠞⠶⠠⠔ ⠿⠒⠀⠀⠀⠀⠀⠛⠑⠞⠩⠇⠞⠀⠙⠥⠗⠹⠂⠀⠧⠑⠗⠓⠜⠇⠞⠀⠎⠊⠹⠀⠵⠥ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠶⠙⠕⠏⠏⠑⠇⠏⠥⠝⠅⠞⠶ ⠿⠶⠀⠀⠀⠀⠀⠛⠇⠩⠹ ⠿⠕⠂⠀⠀⠀⠀⠛⠗⠪⠮⠑⠗⠀⠁⠇⠎ ⠿⠪⠄⠀⠀⠀⠀⠅⠇⠩⠝⠑⠗⠀⠁⠇⠎ ⠘⠃⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝ ⠿⠖⠀⠀⠀⠀⠀⠏⠇⠥⠎ ⠿⠤⠀⠀⠀⠀⠀⠍⠊⠝⠥⠎ ⠿⠖⠤⠀⠀⠀⠀⠏⠇⠥⠎⠐⠂⠍⠊⠝⠥⠎ ⠿⠤⠖⠀⠀⠀⠀⠍⠊⠝⠥⠎⠐⠂⠏⠇⠥⠎ ⠿⠄⠀⠀⠀⠀⠀⠍⠁⠇⠀⠶⠏⠥⠝⠅⠞⠶⠠⠔ ⠿⠦⠀⠀⠀⠀⠀⠍⠁⠇⠀⠶⠅⠗⠣⠵⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠘⠁⠤⠼⠑⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠉ ⠿⠐⠦⠀⠀⠀⠀⠍⠁⠇⠀⠶⠾⠑⠗⠝⠶ ⠿⠴⠀⠀⠀⠀⠀⠧⠑⠗⠅⠝⠳⠏⠋⠞⠀⠍⠊⠞⠀⠶⠅⠥⠇⠇⠑⠗⠂⠀⠧⠑⠗⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠅⠑⠞⠞⠥⠝⠛⠎⠵⠩⠹⠑⠝⠂⠀⠅⠗⠩⠎⠕⠏⠑⠗⠁⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠞⠕⠗⠶ ⠿⠒⠀⠀⠀⠀⠀⠛⠑⠞⠩⠇⠞⠀⠙⠥⠗⠹⠂⠀⠧⠑⠗⠓⠜⠇⠞⠀⠎⠊⠹⠀⠵⠥ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠶⠙⠕⠏⠏⠑⠇⠏⠥⠝⠅⠞⠶ ⠿⠳⠀⠀⠀⠀⠀⠃⠗⠥⠹⠾⠗⠊⠹⠠⠔⠀⠶⠇⠑⠑⠗⠵⠩⠹⠑⠝⠗⠑⠛⠑⠇⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠎⠬⠓⠑⠀⠦⠼⠊⠀⠃⠗⠳⠹⠑⠴⠶ ⠿⠫⠀⠀⠀⠀⠀⠋⠁⠅⠥⠇⠞⠜⠞⠠⠔ ⠘⠉⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝ ⠿⠶⠀⠀⠀⠀⠀⠛⠇⠩⠹ ⠿⠔⠶⠀⠀⠀⠀⠥⠝⠛⠇⠩⠹ ⠿⠶⠶⠀⠀⠀⠀⠊⠙⠑⠝⠞⠊⠱⠀⠛⠇⠩⠹⠂⠀⠅⠕⠝⠛⠗⠥⠑⠝⠞⠀⠶⠵⠁⠓⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠇⠑⠝⠞⠓⠑⠕⠗⠬⠶ ⠿⠔⠶⠶⠀⠀⠀⠝⠊⠹⠞⠀⠊⠙⠑⠝⠞⠊⠱⠀⠛⠇⠩⠹⠂⠀⠊⠝⠅⠕⠝⠛⠗⠥⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠝⠞⠀⠶⠵⠁⠓⠇⠑⠝⠞⠓⠑⠕⠗⠬⠶ ⠿⠒⠶⠀⠀⠀⠀⠙⠑⠋⠊⠝⠊⠞⠊⠕⠝⠎⠛⠑⠍⠜⠮⠀⠛⠇⠩⠹⠀⠶⠙⠕⠏⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠏⠑⠇⠏⠥⠝⠅⠞⠀⠛⠇⠩⠹⠓⠩⠞⠎⠵⠩⠹⠑⠝⠶ ⠿⠶⠒⠀⠀⠀⠀⠙⠑⠋⠊⠝⠊⠞⠊⠕⠝⠎⠛⠑⠍⠜⠮⠀⠛⠇⠩⠹⠀⠶⠛⠇⠩⠹⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠓⠩⠞⠎⠵⠩⠹⠑⠝⠀⠙⠕⠏⠏⠑⠇⠏⠥⠝⠅⠞⠶ ⠿⠒⠶⠒⠀⠀⠀⠧⠑⠗⠞⠡⠱⠃⠁⠗⠀⠶⠙⠕⠏⠏⠑⠇⠏⠥⠝⠅⠞⠀⠛⠇⠩⠹⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠓⠩⠞⠎⠵⠩⠹⠑⠝⠀⠙⠕⠏⠏⠑⠇⠏⠥⠝⠅⠞⠶ ⠿⠢⠀⠀⠀⠀⠀⠜⠓⠝⠇⠊⠹⠂⠀⠜⠟⠥⠊⠧⠁⠇⠑⠝⠞⠂⠀⠏⠗⠕⠏⠕⠗⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠞⠊⠕⠝⠁⠇ ⠿⠔⠢⠀⠀⠀⠀⠝⠊⠹⠞⠀⠜⠓⠝⠇⠊⠹⠂⠀⠝⠊⠹⠞⠀⠜⠟⠥⠊⠧⠁⠇⠑⠝⠞⠂ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠝⠊⠹⠞⠀⠏⠗⠕⠏⠕⠗⠞⠊⠕⠝⠁⠇ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠘⠃⠤⠼⠑⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠙ ⠿⠢⠢⠀⠀⠀⠀⠥⠝⠛⠑⠋⠜⠓⠗⠀⠛⠇⠩⠹ ⠿⠕⠂⠀⠀⠀⠀⠛⠗⠪⠮⠑⠗⠀⠁⠇⠎ ⠿⠔⠕⠂⠀⠀⠀⠝⠊⠹⠞⠀⠛⠗⠪⠮⠑⠗⠀⠁⠇⠎ ⠿⠕⠶⠀⠀⠀⠀⠛⠗⠪⠮⠑⠗⠀⠕⠙⠑⠗⠀⠛⠇⠩⠹ ⠿⠪⠄⠀⠀⠀⠀⠅⠇⠩⠝⠑⠗⠀⠁⠇⠎ ⠿⠔⠪⠄⠀⠀⠀⠝⠊⠹⠞⠀⠅⠇⠩⠝⠑⠗⠀⠁⠇⠎ ⠿⠪⠶⠀⠀⠀⠀⠅⠇⠩⠝⠑⠗⠀⠕⠙⠑⠗⠀⠛⠇⠩⠹ ⠿⠕⠕⠂⠀⠀⠀⠛⠗⠕⠮⠀⠛⠑⠛⠑⠝ ⠿⠪⠪⠄⠀⠀⠀⠅⠇⠩⠝⠀⠛⠑⠛⠑⠝ ⠿⠕⠂⠪⠄⠀⠀⠛⠗⠪⠮⠑⠗⠀⠕⠙⠑⠗⠀⠅⠇⠩⠝⠑⠗⠀⠁⠇⠎ ⠿⠪⠄⠕⠂⠀⠀⠅⠇⠩⠝⠑⠗⠀⠕⠙⠑⠗⠀⠛⠗⠪⠮⠑⠗⠀⠁⠇⠎ ⠿⠕⠶⠪⠄⠀⠀⠛⠗⠪⠮⠑⠗⠂⠀⠛⠇⠩⠹⠀⠕⠙⠑⠗⠀⠅⠇⠩⠝⠑⠗ ⠿⠪⠶⠕⠂⠀⠀⠅⠇⠩⠝⠑⠗⠂⠀⠛⠇⠩⠹⠀⠕⠙⠑⠗⠀⠛⠗⠪⠮⠑⠗ ⠿⠬⠶⠀⠀⠀⠀⠑⠝⠞⠎⠏⠗⠊⠹⠞ ⠿⠬⠢⠢⠀⠀⠀⠑⠝⠞⠎⠏⠗⠊⠹⠞⠀⠥⠝⠛⠑⠋⠜⠓⠗ ⠘⠙⠀⠞⠩⠇⠞⠀⠶⠵⠁⠓⠇⠑⠝⠞⠓⠑⠕⠗⠬⠶ ⠿⠈⠇⠀⠀⠀⠀⠞⠩⠇⠞ ⠿⠔⠈⠇⠀⠀⠀⠞⠩⠇⠞⠀⠝⠊⠹⠞ ⠘⠑⠀⠍⠑⠝⠛⠑⠝⠇⠑⠓⠗⠑⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠃⠀⠍⠑⠝⠛⠑⠝⠇⠑⠓⠤ ⠀⠀⠀⠗⠑⠴⠶ ⠿⠩⠄⠀⠀⠀⠀⠧⠑⠗⠩⠝⠊⠛⠞⠀⠍⠊⠞ ⠿⠬⠄⠀⠀⠀⠀⠛⠑⠱⠝⠊⠞⠞⠑⠝⠀⠍⠊⠞ ⠿⠡⠄⠀⠀⠀⠀⠧⠑⠗⠍⠊⠝⠙⠑⠗⠞⠀⠥⠍⠂⠀⠕⠓⠝⠑ ⠿⠌⠄⠀⠀⠀⠀⠎⠽⠍⠍⠑⠞⠗⠊⠱⠑⠀⠙⠊⠋⠋⠑⠗⠑⠝⠵ ⠿⠩⠒⠀⠀⠀⠀⠧⠑⠇⠀⠶⠧⠑⠗⠃⠁⠝⠙⠎⠞⠓⠑⠕⠗⠬⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠘⠉⠤⠼⠑⠘⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠑ ⠿⠬⠒⠀⠀⠀⠀⠑⠞⠀⠶⠧⠑⠗⠃⠁⠝⠙⠎⠞⠓⠑⠕⠗⠬⠶ ⠿⠯⠑⠀⠀⠀⠀⠊⠾⠀⠑⠇⠑⠍⠑⠝⠞⠀⠧⠕⠝ ⠿⠔⠯⠑⠀⠀⠀⠊⠾⠀⠝⠊⠹⠞⠀⠑⠇⠑⠍⠑⠝⠞⠀⠧⠕⠝ ⠿⠯⠔⠀⠀⠀⠀⠓⠁⠞⠀⠵⠥⠍⠀⠑⠇⠑⠍⠑⠝⠞ ⠿⠣⠄⠀⠀⠀⠀⠊⠾⠀⠑⠝⠞⠓⠁⠇⠞⠑⠝⠀⠊⠝⠂⠀⠊⠾⠀⠞⠩⠇⠍⠑⠝⠛⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠝ ⠿⠣⠶⠀⠀⠀⠀⠊⠾⠀⠑⠝⠞⠓⠁⠇⠞⠑⠝⠀⠊⠝⠀⠕⠙⠑⠗⠀⠛⠇⠩⠹ ⠿⠜⠂⠀⠀⠀⠀⠑⠝⠞⠓⠜⠇⠞⠂⠀⠊⠾⠀⠕⠃⠑⠗⠍⠑⠝⠛⠑⠀⠧⠕⠝ ⠿⠜⠶⠀⠀⠀⠀⠑⠝⠞⠓⠜⠇⠞⠀⠕⠙⠑⠗⠀⠊⠾⠀⠛⠇⠩⠹ ⠘⠋⠀⠇⠕⠛⠊⠅⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠉⠀⠇⠕⠛⠊⠅⠴⠶ ⠿⠬⠂⠀⠀⠀⠀⠥⠝⠙ ⠿⠩⠂⠀⠀⠀⠀⠕⠙⠑⠗ ⠿⠒⠔⠀⠀⠀⠀⠝⠊⠹⠞ ⠘⠛⠀⠛⠑⠕⠍⠑⠞⠗⠬⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠙⠄⠁⠀⠛⠑⠕⠍⠑⠞⠗⠊⠱⠑ ⠀⠀⠀⠎⠽⠍⠃⠕⠇⠑⠴⠶ ⠿⠢⠶⠀⠀⠀⠀⠅⠕⠝⠛⠗⠥⠑⠝⠞⠀⠶⠛⠑⠕⠍⠑⠞⠗⠬⠶ ⠿⠔⠢⠶⠀⠀⠀⠊⠝⠅⠕⠝⠛⠗⠥⠑⠝⠞⠀⠶⠛⠑⠕⠍⠑⠞⠗⠬⠶ ⠿⠒⠬⠀⠀⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠀⠵⠥ ⠿⠶⠬⠀⠀⠀⠀⠏⠑⠗⠎⠏⠑⠅⠞⠊⠧⠀⠵⠥ ⠿⠼⠄⠀⠀⠀⠀⠎⠑⠝⠅⠗⠑⠹⠞⠀⠡⠋ ⠿⠈⠿⠀⠀⠀⠀⠏⠁⠗⠁⠇⠇⠑⠇⠀⠵⠥⠀⠶⠙⠁⠎⠀⠵⠺⠩⠞⠑⠀⠧⠕⠇⠇⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇⠀⠙⠑⠎⠀⠎⠽⠍⠃⠕⠇⠎⠄⠶ ⠿⠈⠿⠶⠀⠀⠀⠏⠁⠗⠁⠇⠇⠑⠇⠀⠥⠝⠙⠀⠛⠇⠩⠹⠀⠶⠙⠁⠎⠀⠵⠺⠩⠞⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠇⠇⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇⠀⠙⠑⠎⠀⠎⠽⠍⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠃⠕⠇⠎⠄⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠘⠑⠤⠼⠑⠘⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠋ ⠘⠓⠀⠏⠋⠩⠇⠑⠀⠶⠎⠬⠓⠑⠀⠦⠼⠛⠀⠏⠋⠩⠇⠑⠴⠶ ⠿⠒⠒⠕⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎ ⠿⠒⠂⠀⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎ ⠿⠪⠒⠒⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎ ⠿⠐⠒⠀⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎ ⠿⠪⠒⠒⠕⠀⠀⠙⠕⠏⠏⠑⠇⠏⠋⠩⠇⠀⠍⠊⠞⠀⠩⠝⠋⠁⠹⠑⠍⠀⠱⠁⠋⠞ ⠿⠐⠒⠂⠀⠀⠀⠙⠕⠏⠏⠑⠇⠏⠋⠩⠇⠀⠍⠊⠞⠀⠩⠝⠋⠁⠹⠑⠍⠀⠱⠁⠋⠞ ⠿⠶⠶⠕⠀⠀⠀⠊⠍⠏⠇⠊⠅⠁⠞⠊⠕⠝⠎⠏⠋⠩⠇⠀⠶⠏⠋⠩⠇⠀⠝⠁⠹ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞⠀⠙⠕⠏⠏⠑⠇⠞⠑⠍⠀⠱⠁⠋⠞⠶ ⠿⠹⠶⠂⠀⠀⠀⠊⠍⠏⠇⠊⠅⠁⠞⠊⠕⠝⠎⠏⠋⠩⠇⠀⠶⠏⠋⠩⠇⠀⠝⠁⠹ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞⠀⠙⠕⠏⠏⠑⠇⠞⠑⠍⠀⠱⠁⠋⠞⠶ ⠿⠪⠶⠶⠕⠀⠀⠜⠟⠥⠊⠧⠁⠇⠑⠝⠵⠏⠋⠩⠇⠀⠶⠙⠕⠏⠏⠑⠇⠏⠋⠩⠇ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠍⠊⠞⠀⠙⠕⠏⠏⠑⠇⠞⠑⠍⠀⠱⠁⠋⠞⠶ ⠿⠹⠐⠶⠂⠀⠀⠜⠟⠥⠊⠧⠁⠇⠑⠝⠵⠏⠋⠩⠇⠀⠶⠙⠕⠏⠏⠑⠇⠏⠋⠩⠇ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠍⠊⠞⠀⠙⠕⠏⠏⠑⠇⠞⠑⠍⠀⠱⠁⠋⠞⠶ ⠿⠘⠒⠂⠀⠀⠀⠵⠥⠕⠗⠙⠝⠥⠝⠛⠎⠏⠋⠩⠇ ⠿⠹⠐⠆⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠕⠃⠑⠝ ⠿⠹⠆⠂⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠥⠝⠞⠑⠝ ⠀⠀⠧⠕⠗⠀⠃⠩⠝⠁⠓⠑⠀⠁⠇⠇⠑⠝⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙ ⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠊⠾⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠵⠥ ⠎⠑⠞⠵⠑⠝⠂⠀⠝⠁⠹⠀⠊⠓⠝⠑⠝⠀⠙⠁⠛⠑⠛⠑⠝⠀⠝⠊⠹⠞⠄⠀⠙⠁ ⠧⠬⠇⠑⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝ ⠅⠩⠝⠑⠝⠀⠏⠥⠝⠅⠞⠀⠙⠑⠗⠀⠕⠃⠑⠗⠑⠝⠀⠏⠥⠝⠅⠞⠗⠩⠓⠑ ⠶⠏⠥⠝⠅⠞⠑⠀⠼⠁⠀⠥⠝⠙⠀⠼⠙⠠⠶⠀⠑⠝⠞⠓⠁⠇⠞⠑⠝⠂⠀⠑⠗⠤ ⠇⠩⠹⠞⠑⠗⠞⠀⠙⠑⠗⠀⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠙⠁⠎⠀⠥⠝⠍⠊⠞⠞⠑⠇⠤ ⠃⠁⠗⠀⠙⠁⠗⠡⠋⠋⠕⠇⠛⠑⠝⠙⠑⠀⠵⠩⠹⠑⠝⠀⠙⠁⠎⠀⠑⠗⠅⠑⠝⠝⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠘⠛⠤⠼⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠛ ⠙⠑⠗⠀⠧⠑⠗⠞⠊⠅⠁⠇⠑⠝⠀⠏⠕⠎⠊⠞⠊⠕⠝⠀⠙⠑⠗⠀⠏⠥⠝⠅⠞⠑ ⠍⠊⠞⠀⠙⠑⠍⠀⠋⠊⠝⠛⠑⠗⠄ ⠀⠀⠙⠁⠎⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠧⠕⠗⠀⠩⠝⠑⠍⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤ ⠃⠵⠺⠄⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠑⠝⠞⠋⠜⠇⠇⠞⠀⠝⠥⠗⠀⠝⠁⠹ ⠵⠩⠹⠑⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠂⠀⠡⠋⠀⠙⠬⠀⠕⠓⠝⠑⠤ ⠓⠊⠝⠀⠅⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠋⠕⠇⠛⠑⠝⠀⠙⠁⠗⠋⠄⠀⠙⠬⠎ ⠎⠊⠝⠙⠀⠧⠕⠗⠀⠁⠇⠇⠑⠍⠀⠙⠬⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙ ⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠂⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠂ ⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠥⠝⠙⠀⠊⠝⠙⠊⠵⠑⠎⠀⠎⠕⠺⠬⠀⠙⠁⠎⠀⠺⠥⠗⠤ ⠵⠑⠇⠵⠩⠹⠑⠝⠄ ⠀⠀⠙⠁⠎⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠧⠕⠗⠀⠙⠑⠍⠀⠍⠁⠇⠏⠥⠝⠅⠞ ⠺⠊⠗⠙⠀⠕⠋⠞⠀⠺⠑⠛⠛⠑⠇⠁⠎⠎⠑⠝⠂⠀⠥⠍⠀⠙⠬⠀⠵⠥⠎⠁⠍⠤ ⠍⠑⠝⠛⠑⠓⠪⠗⠊⠛⠅⠩⠞⠀⠃⠩⠙⠑⠗⠀⠞⠩⠇⠡⠎⠙⠗⠳⠉⠅⠑⠀⠵⠥ ⠧⠑⠗⠙⠣⠞⠇⠊⠹⠑⠝⠄⠀⠙⠁⠍⠊⠞⠀⠙⠑⠗⠀⠏⠥⠝⠅⠞⠀⠝⠊⠹⠞ ⠁⠇⠎⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠎⠏⠥⠝⠅⠞⠀⠛⠑⠇⠑⠎⠑⠝⠀⠺⠊⠗⠙⠂ ⠍⠥⠎⠎⠀⠩⠝⠑⠀⠙⠁⠗⠡⠋⠀⠋⠕⠇⠛⠑⠝⠙⠑⠀⠵⠁⠓⠇⠀⠍⠊⠞ ⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠧⠑⠗⠎⠑⠓⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠋⠳⠗⠀⠙⠑⠝⠀⠃⠗⠥⠹⠾⠗⠊⠹⠀⠥⠝⠙⠀⠙⠁⠎⠀⠋⠁⠅⠥⠇⠞⠜⠞⠤ ⠵⠩⠹⠑⠝⠀⠛⠑⠇⠞⠑⠝⠀⠙⠬⠀⠕⠃⠑⠝⠀⠑⠗⠇⠌⠞⠑⠗⠞⠑⠝⠀⠁⠇⠇⠤ ⠛⠑⠍⠩⠝⠑⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠗⠑⠛⠑⠇⠝⠀⠋⠳⠗⠀⠕⠏⠑⠗⠁⠤ ⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠝⠊⠹⠞⠄ ⠀⠀⠙⠬⠀⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠧⠕⠝⠀⠃⠗⠳⠹⠑⠝⠀⠺⠊⠗⠙⠀⠊⠍ ⠅⠁⠏⠊⠞⠑⠇⠀⠦⠼⠊⠀⠃⠗⠳⠹⠑⠴⠀⠡⠎⠋⠳⠓⠗⠇⠊⠹⠀⠃⠑⠓⠁⠝⠤ ⠙⠑⠇⠞⠄ ⠀⠀⠙⠁⠎⠀⠋⠁⠅⠥⠇⠞⠜⠞⠵⠩⠹⠑⠝⠀⠀⠿⠫⠀⠀⠋⠕⠇⠛⠞⠀⠥⠝⠤ ⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠡⠋⠀⠙⠑⠝⠀⠞⠑⠗⠍⠄⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠝⠁⠹⠀⠙⠑⠍⠀⠋⠁⠅⠥⠇⠞⠜⠞⠵⠩⠹⠑⠝⠀⠱⠇⠬⠮⠞⠀⠩⠝⠑⠀⠧⠑⠗⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠓ ⠺⠑⠹⠎⠇⠥⠝⠛⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠙⠑⠗⠀⠧⠬⠇⠑⠝⠀⠎⠽⠍⠃⠕⠇⠑⠂ ⠙⠬⠀⠍⠊⠞⠀⠙⠑⠍⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠀⠿⠫⠀⠀⠃⠑⠛⠊⠝⠤ ⠝⠑⠝⠂⠀⠡⠎⠄⠀⠋⠁⠇⠇⠎⠀⠎⠊⠹⠀⠁⠝⠀⠙⠬⠎⠑⠗⠀⠾⠑⠇⠇⠑ ⠅⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠑⠗⠛⠊⠃⠞⠂⠀⠍⠥⠎⠎⠀⠋⠳⠗⠀⠩⠝⠙⠣⠤ ⠞⠊⠛⠅⠩⠞⠀⠛⠑⠎⠕⠗⠛⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇ ⠅⠁⠝⠝⠀⠧⠕⠗⠀⠩⠝⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠩⠝ ⠍⠁⠇⠏⠥⠝⠅⠞⠀⠶⠛⠛⠋⠄⠀⠍⠊⠞⠀⠩⠝⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠑⠝⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠶⠀⠕⠙⠑⠗⠀⠁⠃⠑⠗ ⠙⠑⠗⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠏⠥⠝⠅⠞⠀⠀⠿⠈⠀⠀⠩⠝⠛⠑⠋⠳⠛⠞ ⠺⠑⠗⠙⠑⠝⠂⠀⠥⠍⠀⠙⠬⠀⠩⠝⠙⠣⠞⠊⠛⠅⠩⠞⠀⠵⠥⠀⠛⠑⠺⠜⠓⠗⠤ ⠇⠩⠾⠑⠝⠀⠶⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠁⠚⠠⠶⠄ ⠀⠀⠙⠑⠗⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠃⠵⠺⠄⠀⠱⠗⠜⠛⠑⠀⠾⠗⠊⠹⠀⠙⠥⠗⠹ ⠩⠝⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠎⠽⠍⠃⠕⠇⠂⠀⠙⠑⠗⠀⠙⠬⠀⠃⠑⠙⠣⠞⠥⠝⠛ ⠙⠑⠎⠀⠎⠽⠍⠃⠕⠇⠎⠀⠝⠑⠛⠬⠗⠞⠂⠀⠺⠊⠗⠙⠀⠊⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠙⠥⠗⠹⠀⠩⠝⠀⠧⠕⠗⠁⠝⠛⠑⠾⠑⠇⠇⠤ ⠞⠑⠎⠀⠀⠿⠔⠀⠀⠺⠬⠙⠑⠗⠛⠑⠛⠑⠃⠑⠝⠄ ⠀⠀⠩⠝⠵⠑⠇⠝⠑⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠎⠽⠍⠃⠕⠇⠑⠀⠅⠪⠝⠝⠑⠝⠀⠊⠝ ⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠀⠋⠕⠗⠍⠑⠝⠀⠓⠁⠤ ⠃⠑⠝⠄⠀⠙⠑⠗⠀⠥⠝⠞⠑⠗⠑⠀⠾⠗⠊⠹⠀⠃⠩⠍⠀⠎⠽⠍⠃⠕⠇⠀⠋⠳⠗ ⠦⠛⠗⠪⠮⠑⠗⠀⠕⠙⠑⠗⠀⠛⠇⠩⠹⠴⠀⠅⠁⠝⠝⠀⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇ ⠺⠁⠁⠛⠗⠑⠹⠞⠀⠕⠙⠑⠗⠀⠱⠗⠜⠛⠀⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠀⠎⠩⠝⠄ ⠙⠁⠎⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠎⠽⠍⠃⠕⠇⠀⠾⠑⠓⠞⠀⠚⠑⠺⠩⠇⠎ ⠋⠳⠗⠀⠁⠇⠇⠑⠀⠛⠜⠝⠛⠊⠛⠑⠝⠀⠧⠁⠗⠊⠁⠝⠞⠑⠝⠀⠙⠑⠎ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠎⠽⠍⠃⠕⠇⠎⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠊ ⠓⠊⠝⠺⠩⠎⠑⠒ ⠀⠀⠋⠳⠗⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠁⠝⠀⠎⠽⠍⠃⠕⠇⠑⠝⠂⠀⠙⠬⠀⠺⠬ ⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠃⠵⠺⠄⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠡⠎⠤ ⠎⠑⠓⠑⠝⠂⠀⠎⠬⠓⠑⠀⠦⠼⠓⠀⠩⠝⠋⠁⠹⠑⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠴⠄ ⠀⠀⠙⠁⠎⠀⠋⠗⠳⠓⠑⠗⠀⠳⠃⠇⠊⠹⠑⠀⠙⠊⠧⠊⠎⠊⠕⠝⠎⠵⠩⠤ ⠹⠑⠝⠀⠀⠿⠲⠀⠀⠺⠥⠗⠙⠑⠀⠡⠎⠀⠙⠑⠍⠀⠵⠩⠹⠑⠝⠃⠑⠾⠁⠝⠙ ⠛⠑⠾⠗⠊⠹⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠓⠀⠖⠼⠛⠀⠶⠼⠛⠀⠖⠼⠓ \[8 +7 =7 +8\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠭⠀⠤⠼⠑⠀⠶⠼⠃ \[x -5 =2\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠋⠉⠄⠼⠑⠀⠶⠼⠉⠁⠑ ⠕⠙⠑⠗ ⠀⠀⠀⠼⠋⠉⠀⠄⠼⠑⠀⠶⠼⠉⠁⠑ \[63 \cdot 5 =315\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠚ ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠁⠄⠃⠀⠶⠃⠄⠁ \[a \cdot b =b \cdot a\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠼⠉⠙⠀⠦⠼⠑⠀⠶⠼⠁⠛⠚⠀⠕⠙⠑⠗⠠ ⠀⠀⠀⠀⠀⠼⠉⠙⠀⠐⠦⠼⠑⠀⠶⠼⠁⠛⠚ \[34 \times 5 =170 \; \text{oder} \; 34 *5 =170\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠼⠓⠄⠣⠤⠼⠛⠜⠀⠶⠤⠼⠑⠋ ⠕⠙⠑⠗ ⠀⠀⠀⠼⠓⠀⠄⠣⠤⠼⠛⠜⠀⠶⠤⠼⠑⠋ \[8 \cdot (-7) =-56\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠛ ⠀⠀⠀⠼⠁⠚⠀⠒⠼⠙⠀⠶⠼⠃⠂⠑ \[10 :4 =2,5\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠓ ⠀⠀⠀⠁⠀⠒⠃⠀⠶⠉ \[a :b =c\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠁ ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠚⠊ ⠀⠀⠀⠝⠫⠀⠶⠼⠁⠄⠼⠃⠄⠼⠉⠄⠼⠙⠄⠄⠄⠄⠈ ⠀⠀⠀⠀⠀⠄⠣⠝⠀⠤⠼⠁⠜⠄⠝ ⠕⠙⠑⠗ ⠀⠀⠀⠝⠫⠀⠶⠼⠁⠀⠄⠼⠃⠀⠄⠼⠉⠀⠄⠼⠙⠀⠄⠄⠄⠄⠠ ⠀⠀⠀⠀⠀⠄⠣⠝⠀⠤⠼⠁⠜⠀⠄⠝ \[n! =1 \cdot 2 \cdot 3 \cdot 4 \cdot ... \cdot (n -1) \cdot n\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠁⠚ ⠀⠀⠀⠣⠁⠀⠖⠼⠁⠜⠫⠀⠶⠁⠫⠄⠣⠁⠀⠖⠼⠁⠜ ⠕⠙⠑⠗ ⠀⠀⠀⠣⠁⠀⠖⠼⠁⠜⠫⠀⠶⠁⠫⠈⠣⠁⠀⠖⠼⠁⠜ \[(a +1)! =a! (a +1)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠑⠀⠘⠃⠼⠁⠁ ⠀⠀⠀⠋⠀⠴⠛⠣⠭⠜ \[f \circ g(x)\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠀⠀⠀⠀⠀⠑⠝⠙⠑⠀⠙⠑⠎⠀⠑⠗⠾⠑⠝⠀⠃⠁⠝⠙⠑⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠃ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠁⠎⠀⠎⠽⠾⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠀⠀⠀⠀⠀⠊⠝⠀⠙⠑⠗⠀⠙⠣⠞⠱⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠀⠀⠀⠀⠀⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠀⠙⠗⠩⠀⠃⠗⠁⠊⠇⠇⠑⠃⠜⠝⠙⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠵⠺⠩⠞⠑⠗⠀⠃⠁⠝⠙ ⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠑⠗⠾⠑⠗⠀⠃⠁⠝⠙ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠧⠕⠗⠺⠕⠗⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁ ⠀⠀⠑⠝⠞⠺⠊⠉⠅⠇⠥⠝⠛⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃ ⠀⠀⠅⠕⠍⠏⠁⠅⠞⠓⠩⠞⠀⠧⠑⠗⠎⠥⠎⠀⠅⠕⠝⠞⠑⠭⠞⠥⠝⠤ ⠀⠀⠀⠀⠀⠀⠁⠃⠓⠜⠝⠛⠊⠛⠅⠩⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉ ⠀⠀⠝⠣⠑⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙ ⠵⠥⠍⠀⠛⠑⠃⠗⠡⠹⠀⠙⠬⠎⠑⠎⠀⠗⠑⠛⠑⠇⠺⠑⠗⠅⠎⠀⠄⠄⠄⠀⠼⠊ ⠀⠀⠡⠋⠃⠡⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠊ ⠀⠀⠨⠇⠁⠨⠞⠑⠘⠭⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠁ ⠼⠁⠀⠛⠗⠥⠝⠙⠇⠑⠛⠑⠝⠙⠑⠀⠞⠑⠹⠝⠊⠅⠑⠝⠀⠵⠥⠗ ⠀⠀⠀⠀⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠧⠕⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠀⠀⠼⠁⠑ ⠀⠀⠼⠁⠄⠁⠀⠺⠑⠹⠎⠑⠇⠀⠵⠺⠊⠱⠑⠝⠀⠞⠑⠭⠞⠤⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠑ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠁⠀⠇⠁⠽⠕⠥⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠋ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠃⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠉⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠞⠑⠭⠞⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠙ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠙⠀⠙⠕⠏⠏⠑⠇⠇⠑⠑⠗⠵⠩⠹⠑⠝⠞⠑⠹⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠝⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊ ⠀⠀⠀⠀⠼⠁⠄⠁⠄⠑⠀⠓⠊⠝⠺⠩⠎⠑⠀⠵⠥⠍⠀⠩⠝⠎⠁⠞⠵ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠑⠗⠀⠱⠗⠊⠋⠞⠺⠑⠹⠎⠑⠇⠞⠑⠹⠝⠊⠅⠑⠝⠀⠼⠃⠊ ⠀⠀⠼⠁⠄⠃⠀⠞⠗⠑⠝⠝⠑⠝⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠤ ⠀⠀⠀⠀⠀⠀⠞⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠡⠎⠙⠗⠳⠉⠅⠑⠀⠼⠉⠃ ⠀⠀⠼⠁⠄⠉⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠙ ⠼⠃⠀⠵⠊⠋⠋⠑⠗⠝⠀⠥⠝⠙⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠛ ⠀⠀⠼⠃⠄⠁⠀⠁⠗⠁⠃⠊⠱⠑⠀⠵⠊⠋⠋⠑⠗⠝⠀⠥⠝⠙⠀⠵⠁⠓⠤ ⠀⠀⠀⠀⠀⠀⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠛ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠁⠀⠵⠁⠓⠇⠑⠝⠀⠊⠝⠀⠾⠁⠝⠙⠁⠗⠙⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠉⠓ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠃⠀⠵⠁⠓⠇⠑⠝⠀⠊⠝⠀⠛⠑⠎⠑⠝⠅⠞⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠁ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠉⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠙ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠙⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠀⠙⠑⠵⠊⠍⠁⠇⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠋ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠑⠀⠛⠇⠬⠙⠑⠗⠥⠝⠛⠀⠇⠁⠝⠛⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠙⠛ ⠀⠀⠀⠀⠼⠃⠄⠁⠄⠋⠀⠕⠗⠙⠝⠥⠝⠛⠎⠵⠁⠓⠇⠑⠝⠂⠀⠙⠑⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠊⠍⠁⠇⠅⠇⠁⠎⠎⠊⠋⠊⠅⠁⠞⠕⠗⠑⠝⠂ ⠀⠀⠀⠀⠀⠀⠀⠀⠙⠁⠞⠑⠝⠀⠥⠝⠙⠀⠥⠓⠗⠵⠩⠞⠑⠝⠀⠄⠄⠄⠄⠀⠼⠙⠊ ⠀⠀⠼⠃⠄⠃⠀⠗⠪⠍⠊⠱⠑⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠑⠃ ⠼⠉⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠥⠝⠙⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠄⠄⠄⠄⠄⠀⠼⠑⠑ ⠀⠀⠼⠉⠄⠁⠀⠧⠕⠗⠃⠑⠍⠑⠗⠅⠥⠝⠛⠀⠵⠥⠗⠀⠅⠑⠝⠝⠤ ⠀⠀⠀⠀⠀⠀⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠀⠼⠑⠑ ⠀⠀⠼⠉⠄⠃⠀⠛⠗⠕⠮⠤⠀⠥⠝⠙⠀⠅⠇⠩⠝⠱⠗⠩⠃⠥⠝⠛ ⠀⠀⠀⠀⠀⠀⠇⠁⠞⠩⠝⠊⠱⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠀⠼⠑⠋ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊⠊ ⠀⠀⠼⠉⠄⠉⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠑⠊ ⠀⠀⠼⠉⠄⠙⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑ ⠀⠀⠀⠀⠀⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠋⠑ ⠀⠀⠼⠉⠄⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠜⠓⠝⠇⠊⠹⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠀⠼⠛⠚ ⠀⠀⠼⠉⠄⠋⠀⠅⠥⠗⠵⠺⠕⠗⠞⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠛⠙ ⠀⠀⠼⠉⠄⠛⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠛⠛ ⠀⠀⠼⠉⠄⠓⠀⠞⠑⠭⠞⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠀⠀⠀⠀⠀⠀⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠛⠓ ⠼⠙⠀⠩⠝⠓⠩⠞⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠁ ⠀⠀⠼⠙⠄⠁⠀⠅⠑⠝⠝⠵⠩⠹⠝⠥⠝⠛⠀⠧⠕⠝⠀⠩⠝⠓⠩⠞⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠎⠽⠍⠃⠕⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠁ ⠀⠀⠼⠙⠄⠃⠀⠏⠗⠕⠵⠑⠝⠞⠂⠀⠏⠗⠕⠍⠊⠇⠇⠑⠀⠄⠄⠄⠄⠄⠄⠀⠼⠓⠉ ⠀⠀⠼⠙⠄⠉⠀⠺⠊⠝⠅⠑⠇⠤⠀⠥⠝⠙⠀⠞⠑⠍⠏⠑⠗⠁⠞⠥⠗⠤ ⠀⠀⠀⠀⠀⠀⠍⠁⠮⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠉ ⠀⠀⠼⠙⠄⠙⠀⠩⠝⠓⠩⠞⠑⠝⠎⠽⠍⠃⠕⠇⠑⠀⠡⠎⠀⠃⠥⠹⠾⠁⠤ ⠀⠀⠀⠀⠀⠀⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠙ ⠀⠀⠼⠙⠄⠑⠀⠧⠑⠗⠛⠗⠪⠮⠑⠗⠥⠝⠛⠎⠤⠀⠥⠝⠙⠀⠧⠑⠗⠤ ⠀⠀⠀⠀⠀⠀⠅⠇⠩⠝⠑⠗⠥⠝⠛⠎⠏⠗⠜⠋⠊⠭⠑⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠓⠛ ⠀⠀⠼⠙⠄⠋⠀⠺⠜⠓⠗⠥⠝⠛⠎⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠊⠚ ⠼⠑⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠤ ⠀⠀⠀⠀⠹⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠊⠉ ⠵⠺⠩⠞⠑⠗⠀⠃⠁⠝⠙ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠼⠋⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠥⠝⠙⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠾⠗⠊⠹⠑⠀⠼⠁⠚⠉ ⠀⠀⠼⠋⠄⠁⠀⠁⠇⠇⠛⠑⠍⠩⠝⠑⠎⠀⠵⠥⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠀⠼⠁⠚⠑ ⠀⠀⠼⠋⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠚⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊⠊⠊ ⠀⠀⠼⠋⠄⠉⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠤ ⠀⠀⠀⠀⠀⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠚⠓ ⠀⠀⠼⠋⠄⠙⠀⠍⠑⠓⠗⠵⠩⠇⠊⠛⠑⠀⠅⠇⠁⠍⠍⠑⠗⠡⠎⠙⠗⠳⠤ ⠀⠀⠀⠀⠀⠀⠉⠅⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠁⠁ ⠀⠀⠼⠋⠄⠑⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠾⠗⠊⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠁⠛ ⠀⠀⠼⠋⠄⠋⠀⠞⠑⠭⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠤ ⠀⠀⠀⠀⠀⠀⠞⠓⠑⠍⠁⠞⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠚ ⠼⠛⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠉ ⠀⠀⠼⠛⠄⠁⠀⠍⠕⠙⠥⠇⠁⠗⠑⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠉ ⠀⠀⠼⠛⠄⠃⠀⠙⠑⠋⠊⠝⠬⠗⠞⠑⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠃⠊ ⠀⠀⠼⠛⠄⠉⠀⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠀⠧⠕⠝⠀⠏⠋⠩⠇⠑⠝⠀⠄⠄⠀⠼⠁⠉⠁ ⠼⠓⠀⠩⠝⠋⠁⠹⠑⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑ ⠀⠀⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠉⠑ ⠀⠀⠼⠓⠄⠁⠀⠩⠝⠋⠁⠹⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠀⠼⠁⠉⠊ ⠀⠀⠼⠓⠄⠃⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠤ ⠀⠀⠀⠀⠀⠀⠗⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠙⠃ ⠼⠊⠀⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠙⠛ ⠀⠀⠼⠊⠄⠁⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠀⠥⠝⠙⠀⠛⠑⠍⠊⠱⠞⠑ ⠀⠀⠀⠀⠀⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠙⠛ ⠀⠀⠼⠊⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑⠀⠄⠄⠄⠄⠀⠼⠁⠑⠚ ⠀⠀⠼⠊⠄⠉⠀⠡⠎⠋⠳⠓⠗⠇⠊⠹⠑⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑⠀⠀⠼⠁⠑⠃ ⠀⠀⠼⠊⠄⠙⠀⠍⠑⠓⠗⠋⠁⠹⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠑⠋ ⠼⠁⠚⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠞⠑⠹⠝⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠑⠊ ⠀⠀⠼⠁⠚⠄⠁⠀⠩⠝⠋⠁⠹⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠄⠄⠄⠄⠄⠀⠼⠁⠋⠁ ⠀⠀⠼⠁⠚⠄⠃⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠄⠄⠀⠼⠁⠋⠙ ⠀⠀⠼⠁⠚⠄⠉⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠀⠼⠁⠋⠋ ⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠁⠀⠓⠊⠝⠞⠑⠗⠑⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠊⠧ ⠀⠀⠀⠀⠀⠀⠀⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠋⠛ ⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠃⠀⠧⠕⠗⠙⠑⠗⠑⠀⠊⠝⠙⠊⠵⠑⠎⠀⠄⠄⠄⠀⠼⠁⠛⠃ ⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠉⠀⠊⠝⠙⠊⠵⠑⠎⠀⠡⠎⠀⠛⠁⠝⠵⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠛⠙ ⠀⠀⠼⠁⠚⠄⠙⠀⠺⠥⠗⠵⠑⠇⠝⠀⠥⠝⠙⠀⠵⠥⠎⠜⠞⠵⠑⠀⠄⠄⠄⠀⠼⠁⠛⠋ ⠼⠁⠁⠀⠁⠝⠁⠇⠽⠎⠊⠎⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠛⠊ ⠀⠀⠼⠁⠁⠄⠁⠀⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠚ ⠀⠀⠼⠁⠁⠄⠃⠀⠇⠕⠛⠁⠗⠊⠞⠓⠍⠥⠎⠤⠀⠥⠝⠙⠀⠑⠭⠏⠕⠤ ⠀⠀⠀⠀⠀⠀⠝⠑⠝⠞⠊⠁⠇⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠁ ⠀⠀⠼⠁⠁⠄⠉⠀⠊⠝⠞⠑⠛⠗⠁⠇⠤⠀⠥⠝⠙⠀⠙⠊⠋⠋⠑⠗⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠞⠊⠁⠇⠗⠑⠹⠝⠥⠝⠛⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠙ ⠼⠁⠃⠀⠍⠑⠝⠛⠑⠝⠇⠑⠓⠗⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠓⠛ ⠼⠁⠉⠀⠇⠕⠛⠊⠅⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠊⠁ ⠼⠁⠙⠀⠛⠑⠕⠍⠑⠞⠗⠬⠂⠀⠞⠗⠊⠛⠕⠝⠕⠍⠑⠞⠗⠬⠀⠥⠝⠙ ⠀⠀⠀⠀⠧⠑⠅⠞⠕⠗⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠊⠉ ⠀⠀⠼⠁⠙⠄⠁⠀⠛⠑⠕⠍⠑⠞⠗⠊⠱⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠀⠼⠁⠊⠉ ⠀⠀⠼⠁⠙⠄⠃⠀⠺⠊⠝⠅⠑⠇⠤⠂⠀⠓⠽⠏⠑⠗⠃⠑⠇⠋⠥⠝⠅⠤ ⠀⠀⠀⠀⠀⠀⠞⠊⠕⠝⠑⠝⠀⠥⠝⠙⠀⠥⠍⠅⠑⠓⠗⠥⠝⠛⠑⠝⠀⠄⠄⠀⠼⠁⠊⠑ ⠀⠀⠼⠁⠙⠄⠉⠀⠧⠑⠅⠞⠕⠗⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠁⠊⠊ ⠼⠁⠑⠀⠏⠇⠁⠞⠵⠓⠁⠇⠞⠑⠗⠀⠥⠝⠙⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑ ⠀⠀⠀⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠥⠝⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠚⠉ ⠀⠀⠼⠁⠑⠄⠁⠀⠏⠇⠁⠞⠵⠓⠁⠇⠞⠑⠗⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠚⠉ ⠀⠀⠼⠁⠑⠄⠃⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠋⠁⠎⠎⠥⠝⠛⠑⠝⠀⠥⠝⠙⠀⠇⠬⠛⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠚⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧ ⠙⠗⠊⠞⠞⠑⠗⠀⠃⠁⠝⠙ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠁⠝⠓⠜⠝⠛⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠁ ⠘⠁⠼⠁⠀⠱⠗⠊⠋⠞⠇⠊⠹⠑⠀⠗⠑⠹⠑⠝⠧⠑⠗⠋⠁⠓⠗⠑⠝ ⠀⠀⠀⠀⠳⠃⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠁ ⠀⠀⠘⠁⠼⠁⠄⠁⠀⠁⠙⠙⠊⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠑ ⠀⠀⠘⠁⠼⠁⠄⠃⠀⠎⠥⠃⠞⠗⠁⠅⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠛ ⠀⠀⠘⠁⠼⠁⠄⠉⠀⠍⠥⠇⠞⠊⠏⠇⠊⠅⠁⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠁⠊ ⠀⠀⠘⠁⠼⠁⠄⠙⠀⠙⠊⠧⠊⠎⠊⠕⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠃⠁ ⠀⠀⠘⠁⠼⠁⠄⠑⠀⠇⠊⠝⠑⠁⠗⠑⠀⠁⠙⠙⠊⠞⠊⠕⠝⠀⠄⠄⠄⠄⠄⠀⠼⠃⠃⠉ ⠀⠀⠘⠁⠼⠁⠄⠋⠀⠙⠁⠎⠀⠇⠪⠎⠑⠝⠀⠧⠕⠝⠀⠛⠇⠩⠹⠥⠝⠤ ⠀⠀⠀⠀⠀⠀⠛⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠃⠋ ⠘⠁⠼⠃⠀⠜⠝⠙⠑⠗⠥⠝⠛⠑⠝⠀⠊⠝⠀⠙⠑⠗ ⠀⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠃⠊ ⠀⠀⠘⠁⠼⠃⠄⠁⠀⠛⠑⠜⠝⠙⠑⠗⠞⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠀⠼⠃⠃⠊ ⠀⠀⠘⠁⠼⠃⠄⠃⠀⠝⠣⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠚ ⠀⠀⠘⠁⠼⠃⠄⠉⠀⠵⠁⠓⠇⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠃ ⠀⠀⠘⠁⠼⠃⠄⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠥⠝⠙⠀⠊⠝⠙⠊⠵⠑⠎⠀⠼⠃⠉⠉ ⠀⠀⠘⠁⠼⠃⠄⠑⠀⠃⠗⠳⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠉ ⠀⠀⠘⠁⠼⠃⠄⠋⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠙ ⠀⠀⠘⠁⠼⠃⠄⠛⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠥⠝⠙⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑ ⠀⠀⠀⠀⠀⠀⠾⠗⠊⠹⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠑ ⠀⠀⠘⠁⠼⠃⠄⠓⠀⠩⠝⠓⠩⠞⠑⠝⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠛ ⠀⠀⠘⠁⠼⠃⠄⠊⠀⠏⠋⠩⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠛ ⠀⠀⠘⠁⠼⠃⠄⠁⠚⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠞⠑⠹⠝⠊⠅⠀⠄⠄⠄⠄⠄⠀⠼⠃⠉⠓ ⠀⠀⠘⠁⠼⠃⠄⠁⠁⠀⠺⠑⠹⠎⠑⠇⠀⠵⠺⠊⠱⠑⠝⠀⠞⠑⠭⠞⠤ ⠀⠀⠀⠀⠀⠀⠥⠝⠙⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠄⠄⠄⠄⠄⠀⠼⠃⠉⠓ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧⠊ ⠀⠀⠘⠁⠼⠃⠄⠁⠃⠀⠎⠕⠝⠾⠊⠛⠑⠎⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠉⠊ ⠘⠁⠼⠉⠀⠛⠇⠕⠎⠎⠁⠗⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠙⠁ ⠘⠁⠼⠙⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠵⠩⠹⠑⠝⠂⠀⠛⠑⠕⠗⠙⠤ ⠀⠀⠀⠀⠝⠑⠞⠀⠝⠁⠹⠀⠙⠑⠗⠀⠼⠋⠤⠏⠥⠝⠅⠞⠑⠤ ⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠤⠞⠁⠃⠑⠇⠇⠑⠀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠀⠼⠃⠑⠁ ⠘⠁⠼⠑⠀⠁⠇⠏⠓⠁⠃⠑⠞⠊⠱⠑⠎⠀⠎⠁⠹⠗⠑⠛⠊⠾⠑⠗⠀⠄⠄⠀⠼⠃⠓⠁ ⠀⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧⠊⠊ ⠀⠀⠀⠀⠀⠀⠀⠊⠝⠓⠁⠇⠞⠎⠧⠑⠗⠵⠩⠹⠝⠊⠎⠀⠀⠀⠀⠀⠀⠀⠀⠘⠧⠊⠊⠊ ⠼⠋⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠥⠝⠙⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠾⠗⠊⠹⠑ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠋⠕⠇⠛⠑⠝⠙⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠺⠑⠗⠙⠑⠝⠀⠡⠋⠀⠙⠑⠗⠀⠦⠊⠝⠤ ⠝⠑⠝⠎⠩⠞⠑⠴⠀⠙⠊⠗⠑⠅⠞⠀⠁⠝⠀⠙⠁⠎⠀⠃⠑⠝⠁⠹⠃⠁⠗⠞⠑ ⠵⠩⠹⠑⠝⠀⠁⠝⠛⠑⠱⠇⠕⠎⠎⠑⠝⠒ ⠿⠣⠀⠀⠀⠀⠗⠥⠝⠙⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠜⠀⠀⠀⠀⠗⠥⠝⠙⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠷⠀⠀⠀⠀⠑⠉⠅⠊⠛⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠾⠀⠀⠀⠀⠑⠉⠅⠊⠛⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠐⠷⠀⠀⠀⠛⠑⠱⠺⠩⠋⠞⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠐⠾⠀⠀⠀⠛⠑⠱⠺⠩⠋⠞⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠨⠷⠀⠀⠀⠎⠏⠊⠞⠵⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠨⠾⠀⠀⠀⠎⠏⠊⠞⠵⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠠⠷⠀⠀⠀⠾⠥⠍⠏⠋⠺⠊⠝⠅⠇⠊⠛⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠠⠾⠀⠀⠀⠾⠥⠍⠏⠋⠺⠊⠝⠅⠇⠊⠛⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠐⠘⠷⠀⠀⠛⠡⠮⠱⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠶⠕⠃⠑⠗⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠗⠑⠝⠵⠑⠶ ⠿⠐⠘⠾⠀⠀⠛⠡⠮⠱⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠶⠕⠃⠑⠗⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠗⠑⠝⠵⠑⠶ ⠿⠐⠰⠷⠀⠀⠛⠡⠮⠱⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠶⠥⠝⠞⠑⠗⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠗⠑⠝⠵⠑⠶ ⠿⠐⠰⠾⠀⠀⠛⠡⠮⠱⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠶⠥⠝⠞⠑⠗⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠛⠗⠑⠝⠵⠑⠶ ⠿⠼⠣⠀⠀⠀⠗⠥⠝⠙⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠉ ⠿⠼⠜⠀⠀⠀⠗⠥⠝⠙⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠷⠀⠀⠀⠑⠉⠅⠊⠛⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠾⠀⠀⠀⠑⠉⠅⠊⠛⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠐⠷⠀⠀⠛⠑⠱⠺⠩⠋⠞⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠐⠾⠀⠀⠛⠑⠱⠺⠩⠋⠞⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠨⠐⠷⠀⠀⠵⠩⠇⠑⠝⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠥⠝⠛⠎⠅⠇⠁⠍⠍⠑⠗⠒ ⠀⠀⠀⠀⠀⠀⠀⠀⠍⠑⠓⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠎⠑⠝⠙⠑⠀⠛⠗⠕⠮⠑⠀⠇⠊⠝⠅⠑⠀⠛⠑⠱⠺⠩⠋⠞⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠅⠇⠁⠍⠍⠑⠗ ⠿⠈⠇⠀⠀⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠗⠀⠾⠗⠊⠹ ⠿⠈⠿⠀⠀⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠗⠀⠙⠕⠏⠏⠑⠇⠾⠗⠊⠹⠀⠶⠙⠁⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠵⠺⠩⠞⠑⠀⠧⠕⠇⠇⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇⠀⠙⠑⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠎⠽⠍⠃⠕⠇⠎⠄⠶ ⠿⠠⠰⠶⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠑⠀⠁⠝⠍⠑⠗⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠅⠥⠝⠛⠎⠅⠇⠁⠍⠍⠑⠗⠝⠀⠶⠪⠋⠋⠝⠑⠝⠙⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠇⠬⠮⠑⠝⠙⠶ ⠿⠰⠳⠀⠀⠀⠃⠑⠛⠊⠝⠝⠀⠩⠝⠑⠗⠀⠝⠣⠑⠝⠀⠵⠩⠇⠑ ⠀⠀⠋⠳⠗⠀⠇⠬⠛⠑⠝⠙⠑⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠅⠇⠁⠍⠤ ⠍⠑⠗⠝⠀⠎⠬⠓⠑⠀⠦⠼⠁⠑⠄⠃⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠀⠵⠥⠎⠁⠍⠤ ⠍⠑⠝⠋⠁⠎⠎⠥⠝⠛⠑⠝⠀⠥⠝⠙⠀⠇⠬⠛⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠴⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠙ ⠼⠋⠄⠁⠀⠁⠇⠇⠛⠑⠍⠩⠝⠑⠎⠀⠵⠥⠀⠅⠇⠁⠍⠍⠑⠗⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠊⠾⠀⠙⠬⠀⠛⠑⠝⠡⠑ ⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠙⠑⠎⠀⠥⠝⠞⠑⠗⠱⠬⠙⠎⠀⠵⠺⠊⠱⠑⠝⠀⠪⠋⠋⠤ ⠝⠑⠝⠙⠑⠝⠀⠥⠝⠙⠀⠱⠇⠬⠮⠑⠝⠙⠑⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠥⠝⠤ ⠑⠗⠇⠜⠎⠎⠇⠊⠹⠄⠀⠙⠑⠎⠓⠁⠇⠃⠀⠎⠊⠝⠙⠀⠙⠬⠀⠅⠇⠁⠍⠍⠑⠗⠝ ⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠑⠝⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠋⠳⠗⠀⠍⠁⠞⠓⠑⠤ ⠍⠁⠞⠊⠱⠑⠀⠡⠎⠙⠗⠳⠉⠅⠑⠀⠥⠝⠛⠑⠩⠛⠝⠑⠞⠄⠀⠊⠝⠀⠙⠑⠗ ⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠎⠊⠝⠙⠀⠙⠁⠓⠑⠗⠀⠩⠛⠑⠝⠑ ⠅⠇⠁⠍⠍⠑⠗⠋⠕⠗⠍⠑⠝⠀⠑⠗⠋⠕⠗⠙⠑⠗⠇⠊⠹⠄ ⠼⠋⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠁⠇⠇⠑⠝⠀⠅⠇⠁⠍⠍⠑⠗⠎⠽⠍⠃⠕⠇⠑⠝⠀⠛⠑⠍⠩⠝⠎⠁⠍⠀⠊⠾⠂ ⠙⠁⠎⠎⠀⠎⠬⠀⠡⠋⠀⠙⠑⠝⠀⠊⠝⠝⠑⠝⠎⠩⠞⠑⠝⠀⠙⠊⠗⠑⠅⠞⠂ ⠁⠇⠎⠕⠀⠕⠓⠝⠑⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠂⠀⠁⠝⠀⠙⠑⠝⠀⠩⠝⠵⠥⠤ ⠅⠇⠁⠍⠍⠑⠗⠝⠙⠑⠝⠀⠊⠝⠓⠁⠇⠞⠀⠁⠝⠛⠑⠱⠇⠕⠎⠎⠑⠝⠀⠺⠑⠗⠤ ⠙⠑⠝⠄⠀⠕⠃⠀⠡⠋⠀⠙⠑⠗⠀⠡⠮⠑⠝⠎⠩⠞⠑⠀⠙⠑⠗⠀⠅⠇⠁⠍⠍⠑⠗ ⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠾⠑⠓⠑⠝⠀⠍⠥⠎⠎⠂⠀⠊⠾⠀⠧⠕⠍⠀⠃⠑⠤ ⠝⠁⠹⠃⠁⠗⠞⠑⠝⠀⠵⠩⠹⠑⠝⠀⠁⠃⠓⠜⠝⠛⠊⠛⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠺⠑⠗⠙⠑⠝⠀⠌⠮⠑⠗⠑ ⠅⠇⠁⠍⠍⠑⠗⠝⠀⠛⠑⠇⠑⠛⠑⠝⠞⠇⠊⠹⠀⠑⠞⠺⠁⠎⠀⠛⠗⠪⠮⠑⠗ ⠛⠑⠙⠗⠥⠉⠅⠞⠀⠁⠇⠎⠀⠙⠬⠀⠊⠍⠀⠊⠝⠝⠑⠗⠑⠝⠄⠀⠊⠝⠀⠙⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠁⠤⠼⠋⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠑ ⠍⠩⠾⠑⠝⠀⠋⠜⠇⠇⠑⠝⠀⠍⠥⠎⠎⠀⠙⠬⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠙⠬⠎⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠀⠥⠝⠃⠑⠙⠣⠞⠑⠝⠙⠑⠝⠀⠥⠝⠞⠑⠗⠤ ⠱⠬⠙⠀⠝⠊⠹⠞⠀⠺⠬⠙⠑⠗⠛⠑⠃⠑⠝⠄⠀⠚⠑⠙⠕⠹⠀⠅⠁⠝⠝⠀⠑⠎ ⠎⠊⠝⠝⠧⠕⠇⠇⠀⠎⠩⠝⠂⠀⠙⠑⠝⠀⠥⠝⠞⠑⠗⠱⠬⠙⠀⠊⠝⠀⠙⠬ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠵⠥⠀⠳⠃⠑⠗⠝⠑⠓⠍⠑⠝⠂⠀⠑⠞⠺⠁⠀⠡⠎ ⠛⠗⠳⠝⠙⠑⠝⠀⠙⠑⠗⠀⠅⠇⠁⠗⠓⠩⠞⠀⠕⠙⠑⠗⠀⠺⠩⠇⠀⠙⠬ ⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠗⠳⠉⠅⠱⠇⠳⠎⠎⠑⠀⠡⠋⠀⠙⠬⠀⠱⠗⠩⠃⠺⠩⠤ ⠎⠑⠀⠊⠍⠀⠕⠗⠊⠛⠊⠝⠁⠇⠀⠑⠗⠍⠪⠛⠇⠊⠹⠑⠝⠀⠎⠕⠇⠇⠄⠀⠊⠝ ⠙⠬⠎⠑⠝⠀⠋⠜⠇⠇⠑⠝⠀⠅⠪⠝⠝⠑⠝⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠤ ⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠋⠄⠉⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠋⠣⠭⠜⠀⠶⠣⠭⠀⠖⠼⠃⠜⠣⠭⠀⠤⠼⠃⠜ \[f(x) =(x +2)(x -2)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠐⠷⠨⠁⠏⠋⠑⠇⠠⠂⠀⠨⠃⠊⠗⠝⠑⠠⠂⠠ ⠀⠀⠀⠀⠀⠨⠕⠗⠁⠝⠛⠑⠐⠾ \[\{\text{Apfel}, \; \text{Birne}, \; \text{Orange}\}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠋ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠾⠤⠼⠿⠠⠆⠀⠤⠼⠁⠚⠶⠾⠀⠩⠄⠷⠼⠁⠚⠒⠠⠆⠀⠼⠿⠷ \[\left] -\infty; \frac{-10}{7} \right] \cup \left[ \frac{10}{3}; \infty \right[\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠃⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠣⠼⠁⠀⠖⠆⠼⠃⠳⠞⠰⠜⠌⠆⠀⠄⠷⠆⠼⠁⠳⠞⠰⠠ ⠀⠀⠀⠀⠀⠤⠣⠆⠞⠳⠼⠃⠰⠀⠤⠼⠁⠜⠌⠤⠂⠾⠌⠤⠆ \[\left(1 +\frac{2}{t}\right)^{2} \cdot \left[\frac{1}{t} -\left(\frac{t}{2} -1\right)^{-1}\right]^{-2}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠃⠀⠘⠃⠼⠚⠑ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠋⠳⠗⠀⠙⠬⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠍⠊⠞⠀⠓⠑⠗⠤ ⠧⠕⠗⠓⠑⠃⠥⠝⠛⠀⠙⠑⠗⠀⠛⠗⠪⠮⠑⠗⠑⠝⠀⠡⠮⠑⠝⠅⠇⠁⠍⠍⠑⠗⠝ ⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠉⠀⠘⠃⠼⠚⠁⠄⠶ ⠀⠀⠀⠫⠇⠀⠣⠣⠭⠀⠖⠼⠛⠜⠌⠆⠜⠀⠶⠼⠚ \[\lg \left( (x +7)^{2} \right) =0\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠛ ⠼⠋⠄⠉⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑ ⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠼⠣⠀⠀⠀⠗⠥⠝⠙⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠜⠀⠀⠀⠗⠥⠝⠙⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠷⠀⠀⠀⠑⠉⠅⠊⠛⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠾⠀⠀⠀⠑⠉⠅⠊⠛⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠐⠷⠀⠀⠛⠑⠱⠺⠩⠋⠞⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠪⠋⠋⠝⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠿⠼⠐⠾⠀⠀⠛⠑⠱⠺⠩⠋⠞⠑⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗ ⠀⠀⠙⠬⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝ ⠅⠪⠝⠝⠑⠝⠀⠥⠝⠞⠑⠗⠱⠬⠙⠇⠊⠹⠀⠧⠑⠗⠺⠑⠝⠙⠥⠝⠛⠀⠋⠊⠝⠤ ⠙⠑⠝⠂⠀⠵⠥⠍⠀⠃⠩⠎⠏⠬⠇⠂ ⠠⠤⠀⠥⠍⠀⠛⠑⠾⠁⠇⠞⠥⠝⠛⠎⠞⠑⠹⠝⠊⠅⠑⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠤ ⠀⠀⠀⠱⠗⠊⠋⠞⠀⠵⠥⠗⠀⠞⠗⠑⠝⠝⠥⠝⠛⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗ ⠀⠀⠀⠡⠎⠙⠗⠳⠉⠅⠑⠀⠺⠬⠙⠑⠗⠵⠥⠛⠑⠃⠑⠝⠂⠀⠙⠬⠀⠎⠊⠹⠀⠊⠝ ⠀⠀⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠝⠊⠹⠞⠀⠕⠙⠑⠗⠀⠝⠥⠗ ⠀⠀⠀⠱⠺⠑⠗⠀⠗⠑⠁⠇⠊⠎⠬⠗⠑⠝⠀⠇⠁⠎⠎⠑⠝ ⠠⠤⠀⠥⠍⠀⠃⠑⠎⠕⠝⠙⠑⠗⠎⠀⠓⠑⠗⠧⠕⠗⠛⠑⠓⠕⠃⠑⠝⠑⠀⠅⠇⠁⠍⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠓ ⠀⠀⠀⠍⠑⠗⠝⠀⠙⠁⠗⠵⠥⠾⠑⠇⠇⠑⠝ ⠠⠤⠀⠥⠍⠀⠙⠬⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠓⠑⠗⠧⠕⠗⠓⠑⠃⠥⠝⠛⠀⠩⠝⠤ ⠀⠀⠀⠵⠑⠇⠝⠑⠗⠀⠡⠎⠙⠗⠥⠉⠅⠎⠞⠩⠇⠑⠀⠺⠬⠙⠑⠗⠵⠥⠛⠑⠃⠑⠝ ⠠⠤⠀⠥⠍⠀⠩⠝⠵⠑⠇⠝⠑⠀⠞⠩⠇⠑⠀⠅⠕⠍⠏⠇⠊⠵⠬⠗⠞⠑⠗⠀⠡⠎⠤ ⠀⠀⠀⠙⠗⠳⠉⠅⠑⠀⠃⠑⠎⠎⠑⠗⠀⠛⠇⠬⠙⠑⠗⠝⠀⠵⠥⠀⠅⠪⠝⠝⠑⠝⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠺⠑⠗⠙⠑⠝⠀⠃⠑⠙⠊⠝⠛⠥⠝⠤ ⠛⠑⠝⠀⠋⠳⠗⠀⠙⠬⠀⠛⠳⠇⠞⠊⠛⠅⠩⠞⠀⠩⠝⠑⠎⠀⠧⠕⠗⠡⠎⠛⠑⠤ ⠓⠑⠝⠙⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅⠎⠀⠕⠋⠞⠀⠗⠌⠍⠇⠊⠹⠀⠁⠃⠛⠑⠎⠑⠞⠵⠞ ⠥⠝⠙⠀⠁⠍⠀⠑⠝⠙⠑⠀⠙⠑⠗⠎⠑⠇⠃⠑⠝⠀⠵⠩⠇⠑⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠙⠬⠀⠅⠥⠗⠵⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠵⠩⠇⠑⠝⠀⠇⠁⠎⠎⠑⠝ ⠩⠝⠑⠀⠎⠕⠇⠹⠑⠀⠞⠑⠹⠝⠊⠅⠀⠎⠑⠇⠞⠑⠝⠀⠵⠥⠄⠀⠙⠁⠎⠀⠩⠝⠤ ⠱⠇⠬⠮⠑⠝⠀⠙⠑⠗⠀⠃⠑⠙⠊⠝⠛⠥⠝⠛⠑⠝⠀⠊⠝⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠝ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠎⠕⠗⠛⠞⠀⠋⠳⠗⠀⠙⠬ ⠝⠪⠞⠊⠛⠑⠀⠁⠃⠞⠗⠑⠝⠝⠥⠝⠛⠀⠥⠝⠙⠀⠺⠩⠾⠀⠛⠇⠩⠹⠵⠩⠞⠊⠛ ⠙⠁⠗⠡⠋⠀⠓⠊⠝⠂⠀⠙⠁⠎⠎⠀⠙⠬⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠎⠑⠇⠃⠑⠗ ⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠧⠕⠗⠇⠁⠛⠑⠀⠝⠊⠹⠞⠀⠑⠗⠱⠩⠤ ⠝⠑⠝⠄ ⠀⠀⠎⠊⠝⠙⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠅⠇⠁⠍⠍⠑⠗⠏⠁⠁⠤ ⠗⠑⠀⠃⠑⠎⠕⠝⠙⠑⠗⠎⠠⠤⠀⠑⠞⠺⠁⠀⠙⠥⠗⠹⠀⠋⠁⠗⠃⠑⠀⠕⠙⠑⠗ ⠋⠑⠞⠞⠙⠗⠥⠉⠅⠠⠤⠀⠓⠑⠗⠧⠕⠗⠛⠑⠓⠕⠃⠑⠝⠂⠀⠎⠕⠀⠃⠬⠞⠑⠝ ⠙⠬⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝ ⠩⠝⠑⠀⠑⠇⠑⠛⠁⠝⠞⠑⠗⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠁⠇⠎⠀⠙⠑⠗ ⠩⠝⠎⠁⠞⠵⠀⠩⠝⠑⠎⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠎⠀⠋⠳⠗ ⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠑⠝ ⠶⠎⠬⠓⠑⠀⠦⠼⠉⠄⠙⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑ ⠡⠎⠵⠩⠹⠝⠥⠝⠛⠑⠝⠴⠶⠄⠀⠊⠝⠀⠙⠬⠎⠑⠍⠀⠋⠁⠇⠇⠀⠍⠥⠎⠎⠀⠙⠬ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠊ ⠋⠕⠗⠍⠀⠙⠑⠗⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠊⠝⠀⠩⠝⠑⠗⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛ ⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠋⠑⠾⠛⠑⠓⠁⠇⠞⠑⠝ ⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠄⠉⠀⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠴⠶⠄ ⠀⠀⠙⠬⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝ ⠅⠪⠝⠝⠑⠝⠀⠡⠹⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠥⠍⠀⠃⠑⠤ ⠎⠕⠝⠙⠑⠗⠎⠀⠓⠑⠗⠧⠕⠗⠛⠑⠓⠕⠃⠑⠝⠑⠀⠞⠩⠇⠡⠎⠙⠗⠳⠉⠅⠑ ⠵⠥⠀⠅⠑⠝⠝⠵⠩⠹⠝⠑⠝⠄⠀⠡⠹⠀⠊⠝⠀⠙⠬⠎⠑⠍⠀⠋⠁⠇⠇⠀⠍⠥⠎⠎ ⠙⠬⠀⠋⠕⠗⠍⠀⠙⠑⠗⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠊⠝⠀⠩⠝⠑⠗⠀⠁⠝⠍⠑⠗⠤ ⠅⠥⠝⠛⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠳⠃⠑⠗⠞⠗⠁⠛⠥⠝⠛⠀⠋⠑⠾⠤ ⠛⠑⠓⠁⠇⠞⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠄⠉⠀⠁⠝⠍⠑⠗⠤ ⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠤ ⠛⠥⠝⠛⠴⠶⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠝⠕⠞⠁⠞⠊⠕⠝⠀⠙⠑⠗ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠃⠬⠞⠑⠞⠀⠙⠬⠀⠗⠌⠍⠇⠊⠹⠑⠀⠧⠑⠗⠞⠩⠤ ⠇⠥⠝⠛⠀⠙⠑⠗⠀⠎⠽⠍⠃⠕⠇⠑⠀⠎⠥⠃⠞⠊⠇⠑⠀⠍⠪⠛⠇⠊⠹⠅⠩⠤ ⠞⠑⠝⠂⠀⠙⠁⠎⠀⠧⠑⠗⠓⠜⠇⠞⠝⠊⠎⠀⠩⠝⠵⠑⠇⠝⠑⠗⠀⠎⠽⠍⠃⠕⠇⠑ ⠵⠥⠩⠝⠁⠝⠙⠑⠗⠀⠅⠇⠁⠗⠵⠥⠾⠑⠇⠇⠑⠝⠄⠀⠃⠩⠀⠙⠑⠗⠀⠳⠃⠑⠗⠤ ⠞⠗⠁⠛⠥⠝⠛⠀⠅⠕⠍⠏⠇⠑⠭⠑⠗⠀⠡⠎⠙⠗⠳⠉⠅⠑⠀⠊⠝⠀⠙⠬ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠅⠁⠝⠝⠀⠑⠎⠀⠙⠁⠓⠑⠗⠀⠧⠕⠝⠀⠧⠕⠗⠤ ⠞⠩⠇⠀⠎⠩⠝⠂⠀⠙⠬⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠜⠝⠛⠑⠀⠙⠬⠎⠑⠗⠀⠎⠽⠍⠤ ⠃⠕⠇⠑⠀⠙⠥⠗⠹⠀⠩⠝⠀⠵⠥⠎⠜⠞⠵⠇⠊⠹⠑⠎⠀⠅⠇⠁⠍⠍⠑⠗⠏⠁⠁⠗ ⠙⠣⠞⠇⠊⠹⠀⠵⠥⠀⠍⠁⠹⠑⠝⠄⠀⠓⠬⠗⠋⠳⠗⠀⠩⠛⠝⠑⠝⠀⠎⠊⠹⠀⠙⠬ ⠎⠏⠑⠵⠊⠑⠇⠇⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝⠄⠀⠎⠬ ⠎⠊⠛⠝⠁⠇⠊⠎⠬⠗⠑⠝⠂⠀⠙⠁⠎⠎⠀⠁⠝⠀⠙⠬⠎⠑⠝⠀⠾⠑⠇⠇⠑⠝ ⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠅⠩⠝⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝ ⠑⠭⠊⠾⠬⠗⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠚ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠉⠀⠘⠃⠼⠚⠁ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠊⠝⠀⠙⠬⠎⠑⠍⠀⠃⠩⠎⠏⠬⠇⠀⠎⠊⠝⠙⠀⠙⠬⠀⠌⠤ ⠮⠑⠗⠑⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠗⠕⠞⠄⠶ ⠀⠀⠠⠰⠶⠙⠬⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠤ ⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠿⠼⠣⠄⠄⠄⠼⠜⠀⠀⠾⠑⠓⠑⠝⠀⠋⠳⠗⠀⠗⠕⠞⠑ ⠅⠇⠁⠍⠍⠑⠗⠝⠄⠠⠰⠶ ⠀⠀⠀⠫⠇⠀⠼⠣⠣⠭⠀⠖⠼⠛⠜⠌⠆⠼⠜⠀⠶⠼⠚ \[\lg \textcolor{red}{\left(} (x+7)^{2} \textcolor{red}{\right)} =0\] ⠀⠀⠎⠬⠓⠑⠀⠡⠹⠀⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠋⠄ ⠼⠋⠄⠙⠀⠍⠑⠓⠗⠵⠩⠇⠊⠛⠑⠀⠅⠇⠁⠍⠍⠑⠗⠡⠎⠙⠗⠳⠉⠅⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠺⠑⠗⠙⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠍⠑⠓⠗⠑⠗⠑ ⠵⠩⠇⠑⠝⠀⠍⠊⠞⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠡⠎⠙⠗⠳⠉⠅⠑⠝ ⠙⠥⠗⠹⠀⠩⠝⠑⠀⠛⠗⠕⠮⠑⠀⠛⠑⠱⠺⠩⠋⠞⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠵⠥⠤ ⠎⠁⠍⠍⠑⠝⠛⠑⠋⠁⠎⠎⠞⠂⠀⠺⠊⠗⠙⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠱⠗⠊⠋⠞⠀⠙⠁⠎⠀⠎⠽⠍⠃⠕⠇⠀⠀⠿⠨⠐⠷⠀⠀⠧⠕⠗⠀⠙⠑⠍ ⠑⠗⠾⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄⠀⠙⠬⠀⠵⠩⠇⠑⠝⠺⠑⠹⠤ ⠎⠑⠇⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠺⠑⠗⠙⠑⠝⠀⠍⠊⠞⠀⠀⠿⠰⠳ ⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠂⠀⠥⠝⠁⠃⠓⠜⠝⠛⠊⠛⠀⠙⠁⠧⠕⠝⠂⠀⠕⠃ ⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠩⠝⠑⠀⠝⠣⠑⠀⠵⠩⠇⠑⠀⠃⠑⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠉⠤⠼⠋⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠁ ⠛⠕⠝⠝⠑⠝⠀⠺⠊⠗⠙⠀⠶⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠑⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠑ ⠥⠝⠙⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠋⠠⠶⠄ ⠀⠀⠋⠳⠗⠀⠅⠇⠁⠍⠍⠑⠗⠏⠁⠁⠗⠑⠂⠀⠙⠬⠀⠎⠊⠹⠀⠳⠃⠑⠗⠀⠍⠑⠓⠤ ⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝⠀⠑⠗⠾⠗⠑⠉⠅⠑⠝⠂⠀⠛⠊⠃⠞⠀⠑⠎⠀⠊⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠵⠺⠩⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠎⠍⠪⠛⠇⠊⠹⠤ ⠅⠩⠞⠑⠝⠄ ⠀⠀⠳⠃⠇⠊⠹⠑⠗⠺⠩⠎⠑⠀⠺⠊⠗⠙⠀⠙⠬⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠤ ⠍⠑⠗⠀⠵⠥⠀⠃⠑⠛⠊⠝⠝⠀⠙⠑⠗⠀⠑⠗⠾⠑⠝⠀⠵⠩⠇⠑⠀⠥⠝⠙⠀⠙⠬ ⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠊⠍⠀⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠙⠬ ⠇⠑⠞⠵⠞⠑⠀⠵⠩⠇⠑⠀⠛⠑⠎⠑⠞⠵⠞⠄⠀⠙⠬⠀⠵⠩⠇⠑⠝⠺⠑⠹⠎⠑⠇ ⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠺⠑⠗⠙⠑⠝⠀⠡⠹⠀⠓⠬⠗ ⠍⠊⠞⠀⠀⠿⠰⠳⠀⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠄⠀⠩⠝⠑⠀⠝⠣⠑⠀⠏⠓⠽⠤ ⠎⠊⠅⠁⠇⠊⠱⠑⠀⠵⠩⠇⠑⠀⠊⠾⠀⠝⠊⠹⠞⠀⠑⠗⠋⠕⠗⠙⠑⠗⠇⠊⠹⠄ ⠧⠕⠗⠀⠥⠝⠙⠀⠝⠁⠹⠀⠙⠬⠎⠑⠍⠀⠵⠩⠹⠑⠝⠀⠅⠪⠝⠝⠑⠝⠀⠚⠑ ⠝⠁⠹⠙⠑⠍⠂⠀⠺⠬⠀⠑⠎⠀⠙⠑⠗⠀⠳⠃⠑⠗⠎⠊⠹⠞⠇⠊⠹⠅⠩⠞ ⠙⠬⠝⠞⠂⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠛⠑⠎⠑⠞⠵⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠚⠑⠤ ⠙⠕⠹⠀⠙⠁⠗⠋⠀⠙⠁⠎⠀⠑⠗⠾⠑⠀⠙⠑⠗⠀⠃⠩⠙⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠤ ⠵⠩⠹⠑⠝⠀⠝⠊⠹⠞⠀⠁⠇⠎⠀⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠃⠗⠥⠹⠑⠝⠙⠑ ⠍⠊⠎⠎⠙⠣⠞⠑⠞⠀⠺⠑⠗⠙⠑⠝⠀⠅⠪⠝⠝⠑⠝⠄ ⠀⠀⠍⠁⠝⠹⠍⠁⠇⠀⠊⠾⠀⠑⠎⠀⠵⠺⠑⠉⠅⠍⠜⠮⠊⠛⠂⠀⠙⠬ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠩⠝⠑⠎⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠤ ⠱⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅⠎⠀⠳⠃⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠵⠩⠇⠑⠝⠀⠊⠝ ⠙⠬⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠵⠥⠀⠳⠃⠑⠗⠝⠑⠓⠍⠑⠝⠂⠀⠃⠩⠤ ⠎⠏⠬⠇⠎⠺⠩⠎⠑⠀⠵⠥⠗⠀⠧⠑⠗⠁⠝⠱⠡⠇⠊⠹⠥⠝⠛⠀⠃⠩⠀⠙⠑⠗ ⠩⠝⠋⠳⠓⠗⠥⠝⠛⠀⠙⠑⠎⠀⠍⠁⠞⠗⠊⠭⠃⠑⠛⠗⠊⠋⠋⠎⠄⠀⠊⠝⠀⠙⠬⠤ ⠎⠑⠗⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠎⠋⠕⠗⠍⠀⠑⠗⠱⠩⠝⠑⠝⠀⠙⠬⠀⠅⠇⠁⠍⠤ ⠍⠑⠗⠎⠽⠍⠃⠕⠇⠑⠀⠥⠝⠞⠑⠗⠩⠝⠁⠝⠙⠑⠗⠀⠡⠋⠀⠚⠑⠙⠑⠗⠀⠵⠩⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠃ ⠇⠑⠄⠀⠙⠬⠀⠩⠝⠵⠑⠇⠝⠑⠝⠀⠞⠑⠗⠍⠑⠀⠊⠝⠝⠑⠗⠓⠁⠇⠃⠀⠙⠑⠗ ⠅⠇⠁⠍⠍⠑⠗⠝⠀⠺⠑⠗⠙⠑⠝⠀⠎⠕⠀⠡⠎⠛⠑⠗⠊⠹⠞⠑⠞⠂⠀⠙⠁⠎⠎ ⠙⠬⠀⠎⠏⠁⠇⠞⠑⠝⠀⠛⠥⠞⠀⠑⠗⠅⠑⠝⠝⠃⠁⠗⠀⠎⠊⠝⠙⠄⠀⠇⠑⠑⠗⠤ ⠵⠩⠹⠑⠝⠀⠊⠝⠝⠑⠗⠓⠁⠇⠃⠀⠧⠕⠝⠀⠞⠑⠗⠍⠑⠝⠀⠎⠊⠝⠙⠀⠍⠊⠞ ⠏⠥⠝⠅⠞⠀⠼⠙⠀⠀⠿⠈⠀⠀⠡⠎⠵⠥⠋⠳⠇⠇⠑⠝⠂⠀⠥⠍⠀⠙⠬⠀⠵⠥⠤ ⠛⠑⠓⠪⠗⠊⠛⠅⠩⠞⠀⠙⠑⠗⠀⠑⠇⠑⠍⠑⠝⠞⠑⠀⠵⠥⠀⠧⠑⠗⠙⠣⠞⠇⠊⠤ ⠹⠑⠝⠄⠀⠛⠗⠕⠮⠑⠀⠇⠑⠑⠗⠗⠌⠍⠑⠀⠎⠊⠝⠙⠀⠵⠥⠀⠧⠑⠗⠍⠩⠙⠑⠝ ⠶⠎⠬⠓⠑⠀⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠙⠠⠶⠄ ⠓⠊⠝⠺⠩⠎⠒ ⠀⠀⠙⠬⠎⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠎⠋⠕⠗⠍⠀⠋⠳⠓⠗⠞⠀⠝⠊⠹⠞ ⠵⠥⠗⠀⠎⠑⠇⠃⠑⠝⠀⠳⠃⠑⠗⠃⠇⠊⠉⠅⠃⠁⠗⠅⠩⠞⠀⠺⠬⠀⠊⠝⠀⠙⠑⠗ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠄⠀⠎⠬⠀⠊⠾⠀⠵⠥⠙⠑⠍⠀⠎⠑⠓⠗⠀⠡⠋⠺⠜⠝⠤ ⠙⠊⠛⠀⠵⠥⠀⠱⠗⠩⠃⠑⠝⠀⠥⠝⠙⠀⠩⠛⠝⠑⠞⠀⠎⠊⠹⠀⠺⠑⠝⠊⠛⠑⠗ ⠋⠳⠗⠀⠙⠬⠀⠗⠕⠥⠞⠊⠝⠑⠁⠗⠃⠩⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠣⠝⠰⠳⠅⠜⠀⠣⠼⠑⠰⠳⠼⠉⠜ 8 \[\left( \begin{array}{c} n \\ k \end{array} \right) \left( \begin{array}{c} 5 \\ 3 \end{array} \right)\] oder ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠉ \[\binom{n}{k} \binom{5}{3}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠣⠼⠁⠀⠼⠃⠀⠼⠉⠀⠼⠙⠀⠰⠳⠀⠼⠃⠀⠼⠉⠀⠼⠙⠀⠼⠁⠜ ⠡⠹⠀⠩⠝⠙⠣⠞⠊⠛⠀⠥⠝⠙⠀⠳⠃⠑⠗⠎⠊⠹⠞⠇⠊⠹⠀⠊⠾⠀⠙⠬⠀⠧⠕⠍ ⠾⠁⠝⠙⠁⠗⠙⠀⠁⠃⠺⠩⠹⠑⠝⠙⠑⠂⠀⠅⠳⠗⠵⠑⠗⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑⠒ ⠀⠀⠀⠣⠼⠁⠼⠃⠼⠉⠼⠙⠀⠰⠳⠀⠼⠃⠼⠉⠼⠙⠼⠁⠜ \[\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array} \right)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠣⠁⠡⠂⠂⠀⠁⠡⠂⠆⠀⠄⠄⠄⠀⠁⠡⠼⠁⠝⠀⠰⠳⠠ ⠀⠀⠀⠀⠀⠁⠡⠆⠂⠀⠁⠡⠆⠆⠀⠄⠄⠄⠀⠁⠡⠼⠃⠝⠀⠰⠳⠠ ⠀⠀⠀⠀⠀⠄⠄⠄⠀⠰⠳⠠ ⠀⠀⠀⠀⠀⠁⠡⠝⠼⠁⠀⠁⠡⠝⠼⠃⠀⠄⠄⠄⠀⠁⠡⠝⠝⠜ \[\left( \begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array} \right)\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠙ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠣⠼⠚⠀⠀⠀⠀⠭⠈⠖⠼⠁⠜ ⠀⠀⠀⠣⠭⠈⠤⠼⠁⠀⠼⠚⠀⠀⠀⠜ ⠕⠙⠑⠗ ⠀⠀⠀⠣⠼⠚⠀⠭⠈⠖⠼⠁⠀⠰⠳⠀⠭⠈⠤⠼⠁⠀⠼⠚⠜ \[\left( \begin{array}{cc} 0 & x +1 \\ x -1 & 0 \end{array} \right)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠋⠣⠭⠜⠀⠶⠨⠐⠷⠼⠁⠀⠋⠳⠗⠀⠗⠁⠞⠊⠕⠝⠁⠇⠑⠀⠭⠠ ⠀⠀⠀⠀⠀⠰⠳⠀⠼⠚⠀⠋⠳⠗⠀⠊⠗⠗⠁⠞⠊⠕⠝⠁⠇⠑⠀⠭ ⠕⠙⠑⠗ ⠀⠀⠀⠋⠣⠭⠜⠀⠶⠨⠐⠷⠼⠁⠀⠠⠄⠋⠳⠗⠀⠗⠁⠞⠊⠕⠝⠁⠇⠑⠠⠄⠀⠭⠠ ⠀⠀⠀⠀⠀⠰⠳⠀⠼⠚⠀⠠⠄⠋⠳⠗⠀⠊⠗⠗⠁⠞⠊⠕⠝⠁⠇⠑⠠⠄⠀⠭ ⠩⠝⠑⠀⠍⠪⠛⠇⠊⠹⠅⠩⠞⠀⠊⠝⠀⠙⠑⠗⠀⠅⠥⠗⠵⠱⠗⠊⠋⠞⠒ ⠀⠀⠀⠋⠣⠭⠜⠀⠶⠨⠐⠷⠀⠼⠁⠀⠀⠋⠀⠗⠐⠝⠒⠑⠀⠀⠭⠠ ⠀⠀⠀⠀⠀⠰⠳⠀⠼⠚⠀⠀⠋⠀⠊⠗⠗⠐⠝⠒⠑⠀⠀⠭ \[f(x) =\left\{ 1 \; \text{für rationale} \; x \\ 0 \; \text{für irrationale} \; x \right.\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠙⠀⠘⠃⠼⠚⠋ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠎⠬⠓⠑⠀⠡⠹⠀⠦⠼⠋⠄⠉⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠍⠑⠗⠝⠴⠄⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠑ ⠀⠀⠀⠰⠙⠡⠰⠑⠱⠣⠭⠜⠠ ⠀⠀⠀⠀⠀⠶⠨⠐⠷⠆⠰⠑⠀⠖⠭⠀⠳⠀⠰⠑⠌⠆⠰⠠ ⠀⠀⠀⠀⠀⠼⠣⠤⠰⠑⠀⠪⠶⠭⠀⠪⠶⠼⠚⠼⠜⠠ ⠀⠀⠀⠀⠀⠰⠳⠀⠆⠰⠑⠀⠤⠭⠀⠳⠀⠰⠑⠌⠆⠰⠠ ⠀⠀⠀⠀⠀⠼⠣⠼⠚⠀⠪⠶⠭⠀⠪⠶⠰⠑⠼⠜⠠ ⠀⠀⠀⠀⠀⠰⠳⠀⠼⠚⠀⠼⠣⠎⠕⠝⠎⠞⠼⠜ ⠕⠙⠑⠗ ⠀⠀⠀⠰⠙⠡⠰⠑⠱⠣⠭⠜⠠ ⠀⠀⠀⠀⠀⠶⠨⠐⠷⠆⠰⠑⠀⠖⠭⠀⠳⠀⠰⠑⠌⠆⠰⠠ ⠀⠀⠀⠀⠀⠀⠀⠼⠣⠤⠰⠑⠀⠪⠶⠭⠀⠪⠶⠼⠚⠼⠜⠀⠰⠳⠠ ⠀⠀⠀⠀⠀⠆⠰⠑⠀⠤⠭⠀⠳⠀⠰⠑⠌⠆⠰⠠ ⠀⠀⠀⠀⠀⠀⠀⠼⠣⠼⠚⠀⠪⠶⠭⠀⠪⠶⠰⠑⠼⠜⠀⠰⠳⠠ ⠀⠀⠀⠀⠀⠼⠚⠀⠼⠣⠎⠕⠝⠎⠞⠼⠜ \[\delta_{\varepsilon}(x) =\left\{ \begin{array}{ll} \frac{\varepsilon +x}{\varepsilon^{2}} & -\varepsilon \leq x \leq 0 \\ \frac{\varepsilon -x}{\varepsilon^{2}} & 0 \leq x \leq \varepsilon \\ 0 & \text{sonst} \end{array} \right.\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠋ ⠼⠋⠄⠑⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠾⠗⠊⠹⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠈⠇⠀⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠗⠀⠾⠗⠊⠹ ⠿⠈⠿⠀⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠗⠀⠙⠕⠏⠏⠑⠇⠾⠗⠊⠹⠀⠶⠙⠁⠎⠀⠵⠺⠩⠤ ⠀⠀⠀⠀⠀⠀⠀⠞⠑⠀⠧⠕⠇⠇⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇⠀⠙⠑⠎⠀⠎⠽⠍⠤ ⠀⠀⠀⠀⠀⠀⠀⠃⠕⠇⠎⠄⠶ ⠿⠰⠳⠀⠀⠃⠑⠛⠊⠝⠝⠀⠩⠝⠑⠗⠀⠝⠣⠑⠝⠀⠵⠩⠇⠑ ⠀⠀⠩⠝⠵⠑⠇⠝⠑⠀⠎⠑⠝⠅⠗⠑⠹⠞⠑⠀⠾⠗⠊⠹⠑⠀⠺⠑⠗⠙⠑⠝⠀⠍⠊⠞ ⠙⠑⠍⠀⠎⠽⠍⠃⠕⠇⠀⠀⠿⠈⠇⠀⠀⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠂⠀⠵⠥⠍⠀⠃⠩⠤ ⠎⠏⠬⠇⠀⠁⠇⠎⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠦⠞⠩⠇⠞⠴ ⠕⠙⠑⠗⠀⠃⠩⠀⠙⠑⠗⠀⠇⠪⠎⠥⠝⠛⠀⠧⠕⠝⠀⠛⠇⠩⠹⠥⠝⠛⠑⠝⠂⠀⠥⠍ ⠙⠬⠀⠃⠑⠱⠗⠩⠃⠥⠝⠛⠀⠙⠑⠎⠀⠁⠅⠞⠥⠑⠇⠇⠑⠝⠀⠇⠪⠎⠥⠝⠛⠎⠤ ⠱⠗⠊⠞⠞⠎⠀⠧⠕⠝⠀⠙⠑⠗⠀⠛⠇⠩⠹⠥⠝⠛⠀⠁⠃⠵⠥⠞⠗⠑⠝⠝⠑⠝ ⠶⠎⠬⠓⠑⠀⠦⠼⠑⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠤ ⠵⠩⠹⠑⠝⠴⠀⠥⠝⠙⠀⠦⠘⠁⠼⠁⠄⠋⠀⠙⠁⠎⠀⠇⠪⠎⠑⠝⠀⠧⠕⠝ ⠛⠇⠩⠹⠥⠝⠛⠑⠝⠴⠶⠄ ⠀⠀⠞⠗⠑⠞⠑⠝⠀⠙⠬⠀⠾⠗⠊⠹⠑⠀⠏⠁⠁⠗⠺⠩⠎⠑⠀⠡⠋⠂⠀⠵⠥⠍ ⠃⠩⠎⠏⠬⠇⠀⠁⠇⠎⠀⠃⠑⠞⠗⠁⠛⠎⠾⠗⠊⠹⠑⠀⠕⠙⠑⠗⠀⠁⠇⠎⠀⠙⠑⠤ ⠞⠑⠗⠍⠊⠝⠁⠝⠞⠑⠝⠾⠗⠊⠹⠑⠀⠃⠩⠀⠍⠁⠞⠗⠊⠵⠑⠝⠂⠀⠺⠑⠗⠙⠑⠝ ⠎⠬⠀⠺⠬⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠃⠑⠓⠁⠝⠙⠑⠇⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠘⠏⠣⠼⠃⠈⠇⠼⠑⠜ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠛ \[P(2 | 5)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠈⠇⠤⠼⠉⠈⠇⠀⠶⠼⠉ \[|-3| =3\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠰⠑⠀⠶⠈⠇⠁⠀⠤⠁⠒⠈⠇ \[\varepsilon =|a -\overline{a}|\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠽⠀⠶⠈⠇⠈⠇⠼⠉⠭⠈⠇⠀⠤⠼⠉⠈⠇ \[y =||3x| -3|\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠫⠉⠰⠋⠀⠶⠆⠭⠄⠽⠀⠳⠀⠈⠇⠭⠈⠇⠄⠈⠇⠽⠈⠇⠰ \[\cos \phi =\frac{x \cdot y}{|x| \cdot |y|}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠋ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠎⠬⠓⠑⠀⠡⠹⠀⠦⠘⠁⠼⠁⠄⠋⠀⠙⠁⠎⠀⠇⠪⠎⠑⠝ ⠧⠕⠝⠀⠛⠇⠩⠹⠥⠝⠛⠑⠝⠴⠄⠶ ⠀⠀⠀⠭⠀⠶⠼⠉⠭⠀⠤⠼⠙⠀⠀⠈⠇⠤⠭ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠓ \[x =3x -4 \quad | -x\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠛ ⠀⠀⠀⠐⠷⠅⠀⠯⠑⠨⠨⠵⠀⠈⠇⠀⠏⠀⠪⠶⠅⠀⠪⠶⠟⠐⠾⠠ ⠀⠀⠀⠀⠀⠶⠒⠷⠏⠄⠄⠄⠟⠾ \[\{k \in \mathbb{Z} | p \leq k \leq q\} =:[p ... q]\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠓ ⠀⠀⠀⠈⠇⠁⠡⠂⠀⠃⠡⠂⠀⠰⠳⠀⠁⠡⠆⠀⠃⠡⠆⠈⠇ 8 \[\left| \begin{array}{cc} a_{1} & b_{1} \\ a_{2} & b_{2} \end{array} \right|\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠑⠀⠘⠃⠼⠚⠊ ⠀⠀⠀⠈⠿⠁⠄⠭⠈⠿⠀⠶⠈⠇⠁⠈⠇⠄⠈⠿⠭⠈⠿ \[\|a \cdot x\| =|a| \cdot \|x\|\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠁⠊ ⠼⠋⠄⠋⠀⠞⠑⠭⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠊⠝⠀⠙⠑⠗ ⠀⠀⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠡⠹⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠏⠁⠎⠎⠁⠛⠑⠝⠀⠞⠗⠑⠞⠑⠝ ⠅⠇⠁⠍⠍⠑⠗⠝⠀⠡⠋⠂⠀⠙⠬⠀⠑⠓⠑⠗⠀⠩⠝⠑⠀⠞⠑⠭⠞⠤⠀⠁⠇⠎ ⠩⠝⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠋⠥⠝⠅⠞⠊⠕⠝⠀⠑⠗⠋⠳⠇⠇⠑⠝⠄ ⠵⠥⠀⠙⠬⠎⠑⠍⠀⠵⠺⠑⠉⠅⠀⠙⠳⠗⠋⠑⠝⠀⠙⠬⠀⠅⠇⠁⠍⠍⠑⠗⠝ ⠙⠑⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠊⠝⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠦⠊⠍⠏⠕⠗⠞⠬⠗⠞⠴⠀⠺⠑⠗⠙⠑⠝⠄⠀⠎⠬⠀⠺⠑⠗⠙⠑⠝⠀⠙⠁⠝⠝ ⠙⠥⠗⠹⠀⠩⠝⠑⠝⠀⠧⠕⠗⠡⠎⠛⠑⠓⠑⠝⠙⠑⠝⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠿⠠ ⠧⠕⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠎⠽⠍⠃⠕⠇⠑⠝⠀⠶⠺⠬⠀⠙⠑⠍ ⠛⠇⠩⠹⠓⠩⠞⠎⠵⠩⠹⠑⠝⠶⠀⠥⠝⠞⠑⠗⠱⠬⠙⠑⠝⠀⠶⠎⠬⠓⠑ ⠦⠼⠉⠄⠛⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠴⠶⠄ ⠀⠀⠝⠊⠹⠞⠀⠁⠇⠇⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠊⠝⠀⠩⠝⠑⠗⠀⠍⠁⠞⠓⠑⠤ ⠍⠁⠞⠊⠱⠑⠝⠀⠥⠍⠛⠑⠃⠥⠝⠛⠀⠓⠁⠃⠑⠝⠀⠙⠬⠀⠩⠛⠑⠝⠞⠇⠊⠹⠑ ⠋⠥⠝⠅⠞⠊⠕⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠅⠇⠁⠍⠍⠑⠗⠝⠄⠀⠃⠩⠤ ⠎⠏⠬⠇⠑⠀⠓⠬⠗⠋⠳⠗⠀⠎⠊⠝⠙⠀⠋⠕⠗⠍⠑⠇⠝⠥⠍⠍⠑⠗⠝⠂ ⠛⠇⠩⠹⠥⠝⠛⠎⠃⠑⠙⠊⠝⠛⠥⠝⠛⠑⠝⠀⠥⠝⠙⠀⠩⠝⠓⠩⠞⠑⠝⠀⠓⠊⠝⠤ ⠞⠑⠗⠀⠛⠇⠩⠹⠥⠝⠛⠑⠝⠄⠀⠓⠬⠗⠀⠊⠾⠀⠑⠎⠀⠙⠑⠗⠀⠱⠗⠩⠃⠑⠝⠤ ⠙⠑⠝⠀⠃⠵⠺⠄⠀⠳⠃⠑⠗⠞⠗⠁⠛⠑⠝⠙⠑⠝⠀⠏⠑⠗⠎⠕⠝⠀⠳⠃⠑⠗⠤ ⠇⠁⠎⠎⠑⠝⠂⠀⠞⠑⠭⠞⠤⠀⠕⠙⠑⠗⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠅⠇⠁⠍⠤ ⠍⠑⠗⠝⠀⠵⠥⠀⠺⠜⠓⠇⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠚ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠋⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠘⠊⠡⠂⠀⠶⠘⠊⠡⠆⠀⠶⠘⠊⠀⠠⠶⠨⠛⠑⠎⠁⠍⠞⠎⠞⠗⠕⠍⠠⠶ \[I_{1} =I_{2} =I \quad \text{(Gesamtstrom)}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠋⠀⠘⠃⠼⠚⠃ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠙⠬⠀⠋⠕⠗⠍⠑⠇⠝⠥⠍⠍⠑⠗⠬⠗⠥⠝⠛⠂⠀⠙⠬⠀⠊⠝ ⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠍⠩⠾⠀⠁⠍⠀⠗⠑⠹⠞⠑⠝⠀⠎⠩⠞⠑⠝⠤ ⠗⠁⠝⠙⠀⠾⠑⠓⠞⠂⠀⠺⠊⠗⠙⠀⠊⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞ ⠃⠑⠧⠕⠗⠵⠥⠛⠞⠀⠇⠊⠝⠅⠎⠀⠏⠇⠁⠞⠵⠬⠗⠞⠄⠀⠊⠝⠀⠙⠑⠗ ⠵⠺⠩⠞⠑⠝⠀⠙⠑⠗⠀⠋⠕⠇⠛⠑⠝⠙⠑⠝⠀⠧⠁⠗⠊⠁⠝⠞⠑⠝⠀⠾⠑⠓⠞ ⠎⠬⠀⠊⠝⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠆⠀⠑⠎⠀⠺⠊⠗⠙⠀⠑⠗⠾⠀⠙⠁⠝⠁⠹ ⠙⠥⠗⠹⠀⠇⠁⠽⠕⠥⠞⠞⠑⠹⠝⠊⠅⠀⠊⠝⠀⠙⠬⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠤ ⠱⠗⠊⠋⠞⠀⠛⠑⠺⠑⠹⠎⠑⠇⠞⠄⠀⠎⠬⠓⠑⠀⠦⠼⠁⠄⠁⠄⠁⠀⠇⠁⠽⠤ ⠕⠥⠞⠴⠄⠶ ⠀⠀⠀⠠⠶⠼⠁⠄⠁⠠⠶⠀⠎⠀⠶⠧⠡⠴⠄⠞⠀⠖⠼⠁⠆⠁⠞⠌⠆ ⠕⠙⠑⠗ ⠶⠼⠁⠄⠁⠠⠶ ⠀⠀⠀⠎⠀⠶⠧⠡⠴⠄⠞⠀⠖⠼⠁⠆⠁⠞⠌⠆ ⠕⠙⠑⠗ ⠀⠀⠀⠣⠼⠁⠄⠁⠜⠀⠀⠎⠀⠶⠧⠡⠴⠄⠞⠀⠖⠼⠁⠆⠁⠞⠌⠆ \[s =v_{0} \cdot t +\frac{1}{2} at^{2} \quad (1.1)\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠁ ⠃⠩⠎⠏⠬⠇⠀⠼⠋⠄⠋⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠭⠌⠆⠀⠖⠏⠭⠀⠖⠟⠀⠶⠼⠚⠀⠠⠶⠏⠀⠔⠶⠼⠚⠠⠶ ⠕⠙⠑⠗ ⠀⠀⠀⠭⠌⠆⠀⠖⠏⠭⠀⠖⠟⠀⠶⠼⠚⠀⠀⠣⠏⠀⠔⠶⠼⠚⠜ \[x^{2} +px +q =0 \quad (p \neq 0)\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠋⠄⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠃ ⠼⠛⠀⠏⠋⠩⠇⠑ ⠶⠶⠶⠶⠶⠶⠶⠶ ⠀⠀⠙⠬⠀⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠧⠑⠗⠋⠳⠛⠞ ⠳⠃⠑⠗⠀⠵⠺⠩⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠎⠁⠗⠞⠑⠝⠀⠋⠳⠗⠀⠏⠋⠩⠇⠑⠄ ⠠⠤⠀⠊⠝⠀⠙⠑⠗⠀⠍⠕⠙⠥⠇⠁⠗⠑⠝⠀⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠺⠑⠗⠙⠑⠝ ⠀⠀⠀⠏⠋⠩⠇⠑⠀⠡⠎⠀⠑⠇⠑⠍⠑⠝⠞⠑⠝⠀⠋⠳⠗⠀⠗⠊⠹⠞⠥⠝⠛ ⠀⠀⠀⠶⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠂⠀⠧⠑⠗⠞⠊⠅⠁⠇⠀⠕⠙⠑⠗⠀⠙⠊⠁⠛⠕⠤ ⠀⠀⠀⠝⠁⠇⠶⠂⠀⠱⠁⠋⠞⠤⠀⠥⠝⠙⠀⠎⠏⠊⠞⠵⠑⠝⠋⠕⠗⠍⠀⠵⠥⠤ ⠀⠀⠀⠎⠁⠍⠍⠑⠝⠛⠑⠎⠑⠞⠵⠞⠄ ⠠⠤⠀⠋⠳⠗⠀⠩⠝⠊⠛⠑⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠀⠏⠋⠩⠇⠑⠀⠾⠑⠓⠑⠝ ⠀⠀⠀⠵⠥⠎⠜⠞⠵⠇⠊⠹⠀⠙⠑⠋⠊⠝⠬⠗⠞⠑⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠑⠝ ⠀⠀⠀⠵⠥⠗⠀⠧⠑⠗⠋⠳⠛⠥⠝⠛⠄ ⠼⠛⠄⠁⠀⠍⠕⠙⠥⠇⠁⠗⠑⠀⠏⠋⠩⠇⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠏⠋⠩⠇⠍⠕⠙⠥⠇⠑ ⠿⠹⠀⠀⠀⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠏⠋⠩⠇⠙⠁⠗⠾⠑⠇⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠇⠥⠝⠛⠑⠝ ⠿⠆⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠗⠀⠧⠑⠗⠞⠊⠅⠁⠇⠑⠗⠀⠱⠁⠋⠞ ⠿⠒⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠗⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠗⠀⠱⠁⠋⠞ ⠿⠢⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠗⠀⠙⠊⠁⠛⠕⠝⠁⠇⠑⠗⠀⠱⠁⠋⠞⠀⠶⠇⠊⠝⠅⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠕⠃⠑⠝⠐⠂⠗⠑⠹⠞⠎⠀⠥⠝⠞⠑⠝⠶ ⠿⠔⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠗⠀⠙⠊⠁⠛⠕⠝⠁⠇⠑⠗⠀⠱⠁⠋⠞⠀⠶⠇⠊⠝⠅⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠤⠼⠛⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⠥⠝⠞⠑⠝⠐⠂⠗⠑⠹⠞⠎⠀⠕⠃⠑⠝⠶ ⠿⠶⠀⠀⠀⠀⠙⠕⠏⠏⠑⠇⠞⠑⠗⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠗⠀⠱⠁⠋⠞ ⠿⠆⠆⠀⠀⠀⠛⠑⠾⠗⠊⠹⠑⠇⠞⠑⠗⠀⠩⠝⠋⠁⠹⠑⠗⠀⠧⠑⠗⠞⠊⠅⠁⠇⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞ ⠿⠒⠒⠀⠀⠀⠛⠑⠾⠗⠊⠹⠑⠇⠞⠑⠗⠀⠩⠝⠋⠁⠹⠑⠗⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠇⠑⠗⠀⠱⠁⠋⠞ ⠿⠢⠢⠀⠀⠀⠛⠑⠾⠗⠊⠹⠑⠇⠞⠑⠗⠀⠩⠝⠋⠁⠹⠑⠗⠀⠙⠊⠁⠛⠕⠝⠁⠇⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠶⠇⠊⠝⠅⠎⠀⠕⠃⠑⠝⠐⠂⠗⠑⠹⠞⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠥⠝⠞⠑⠝⠶ ⠿⠔⠔⠀⠀⠀⠛⠑⠾⠗⠊⠹⠑⠇⠞⠑⠗⠀⠩⠝⠋⠁⠹⠑⠗⠀⠙⠊⠁⠛⠕⠝⠁⠇⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠶⠇⠊⠝⠅⠎⠀⠥⠝⠞⠑⠝⠐⠂⠗⠑⠹⠞⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠕⠃⠑⠝⠶ ⠿⠶⠶⠀⠀⠀⠛⠑⠾⠗⠊⠹⠑⠇⠞⠑⠗⠀⠙⠕⠏⠏⠑⠇⠞⠑⠗⠀⠓⠕⠗⠊⠵⠕⠝⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠞⠁⠇⠑⠗⠀⠱⠁⠋⠞ ⠿⠐⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠀⠎⠏⠊⠞⠵⠑⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠕⠙⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠥⠝⠞⠑⠝ ⠿⠂⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠀⠎⠏⠊⠞⠵⠑⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎⠀⠕⠙⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠕⠃⠑⠝ ⠿⠐⠐⠀⠀⠀⠙⠕⠏⠏⠑⠇⠞⠑⠀⠎⠏⠊⠞⠵⠑⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠕⠙⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠥⠝⠞⠑⠝ ⠿⠂⠂⠀⠀⠀⠙⠕⠏⠏⠑⠇⠞⠑⠀⠎⠏⠊⠞⠵⠑⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎⠀⠕⠙⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠕⠃⠑⠝ ⠿⠤⠀⠀⠀⠀⠾⠗⠊⠹⠀⠙⠥⠗⠹⠀⠙⠑⠝⠀⠱⠁⠋⠞ ⠿⠘⠀⠀⠀⠀⠅⠇⠩⠝⠑⠗⠀⠟⠥⠑⠗⠾⠗⠊⠹⠀⠩⠝⠑⠎⠀⠵⠥⠕⠗⠙⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠝⠥⠝⠛⠎⠏⠋⠩⠇⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠙ ⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠀⠏⠋⠩⠇⠑⠂⠀⠃⠩⠀⠙⠑⠝⠑⠝⠀⠵⠥⠍⠩⠾⠀⠡⠋ ⠙⠁⠎⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠧⠑⠗⠵⠊⠹⠞⠑⠞⠀⠺⠊⠗⠙ ⠿⠒⠂⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞⠀⠩⠝⠋⠁⠹⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠿⠐⠒⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠍⠊⠞⠀⠩⠝⠋⠁⠹⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠿⠐⠒⠂⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠥⠝⠙⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠍⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠎⠏⠊⠞⠵⠑⠝ ⠿⠘⠒⠂⠀⠀⠵⠥⠕⠗⠙⠝⠥⠝⠛⠎⠏⠋⠩⠇ ⠀⠀⠍⠊⠞⠀⠙⠑⠗⠀⠍⠕⠙⠥⠇⠁⠗⠑⠝⠀⠙⠁⠗⠾⠑⠇⠇⠥⠝⠛⠀⠅⠪⠝⠤ ⠝⠑⠝⠀⠏⠋⠩⠇⠑⠀⠍⠊⠞⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠝⠀⠱⠁⠋⠞⠤⠀⠥⠝⠙ ⠎⠏⠊⠞⠵⠑⠝⠋⠕⠗⠍⠑⠝⠀⠊⠝⠀⠁⠹⠞⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠀⠗⠊⠹⠤ ⠞⠥⠝⠛⠑⠝⠀⠺⠬⠙⠑⠗⠛⠑⠛⠑⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠩⠝⠀⠏⠋⠩⠇⠎⠽⠍⠃⠕⠇⠀⠺⠊⠗⠙⠀⠚⠑⠀⠝⠁⠹⠀⠧⠕⠗⠓⠁⠝⠤ ⠙⠑⠝⠎⠩⠝⠀⠙⠑⠗⠀⠑⠇⠑⠍⠑⠝⠞⠑⠠⠤⠀⠜⠓⠝⠇⠊⠹⠀⠺⠬⠀⠊⠝ ⠩⠝⠑⠍⠀⠃⠡⠅⠁⠾⠑⠝⠎⠽⠾⠑⠍⠠⠤⠀⠺⠬⠀⠋⠕⠇⠛⠞⠀⠵⠥⠎⠁⠍⠤ ⠍⠑⠝⠛⠑⠎⠑⠞⠵⠞⠒ ⠠⠤⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠏⠋⠩⠇⠑ ⠠⠤⠀⠾⠗⠊⠹⠀⠙⠥⠗⠹⠀⠙⠑⠝⠀⠱⠁⠋⠞⠀⠃⠵⠺⠄⠀⠟⠥⠑⠗⠾⠗⠊⠹ ⠀⠀⠀⠃⠩⠍⠀⠵⠥⠕⠗⠙⠝⠥⠝⠛⠎⠏⠋⠩⠇ ⠠⠤⠀⠎⠏⠊⠞⠵⠑⠀⠁⠍⠀⠇⠊⠝⠅⠑⠝⠂⠀⠃⠩⠀⠧⠑⠗⠞⠊⠅⠁⠇⠑⠝ ⠀⠀⠀⠏⠋⠩⠇⠑⠝⠀⠁⠍⠀⠥⠝⠞⠑⠗⠑⠝⠀⠑⠝⠙⠑⠀⠙⠑⠎⠀⠱⠁⠋⠞⠎ ⠀⠀⠀⠶⠋⠁⠇⠇⠎⠀⠧⠕⠗⠓⠁⠝⠙⠑⠝⠶ ⠠⠤⠀⠱⠁⠋⠞ ⠠⠤⠀⠎⠏⠊⠞⠵⠑⠀⠁⠍⠀⠗⠑⠹⠞⠑⠝⠂⠀⠃⠩⠀⠧⠑⠗⠞⠊⠅⠁⠇⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠑ ⠀⠀⠀⠏⠋⠩⠇⠑⠝⠀⠁⠍⠀⠕⠃⠑⠗⠑⠝⠀⠑⠝⠙⠑⠀⠙⠑⠎⠀⠱⠁⠋⠞⠎ ⠀⠀⠀⠶⠋⠁⠇⠇⠎⠀⠧⠕⠗⠓⠁⠝⠙⠑⠝⠶ ⠀⠀⠙⠗⠩⠤⠀⠥⠝⠙⠀⠍⠑⠓⠗⠋⠁⠹⠑⠀⠎⠏⠊⠞⠵⠑⠝⠀⠺⠑⠗⠙⠑⠝ ⠁⠝⠁⠇⠕⠛⠀⠙⠑⠝⠀⠙⠕⠏⠏⠑⠇⠞⠑⠝⠀⠛⠑⠃⠊⠇⠙⠑⠞⠄ ⠀⠀⠙⠬⠀⠓⠕⠗⠊⠵⠕⠝⠞⠁⠇⠑⠝⠀⠏⠋⠩⠇⠑⠀⠀⠿⠒⠂⠀⠀⠿⠐⠒ ⠿⠐⠒⠂⠀⠀⠎⠕⠺⠬⠀⠀⠿⠘⠒⠂⠀⠀⠶⠵⠥⠕⠗⠙⠝⠥⠝⠛⠎⠏⠋⠩⠇⠶ ⠺⠑⠗⠙⠑⠝⠀⠍⠩⠾⠑⠝⠎⠀⠕⠓⠝⠑⠀⠱⠇⠳⠎⠎⠑⠇⠵⠩⠹⠑⠝⠀⠛⠑⠤ ⠱⠗⠬⠃⠑⠝⠄ ⠀⠀⠎⠊⠝⠙⠀⠺⠩⠞⠑⠗⠑⠀⠏⠋⠩⠇⠋⠕⠗⠍⠑⠝⠠⠤⠀⠵⠥⠍⠀⠃⠩⠤ ⠎⠏⠬⠇⠀⠩⠝⠑⠀⠛⠑⠃⠕⠛⠑⠝⠑⠀⠎⠏⠊⠞⠵⠑⠠⠤⠀⠙⠁⠗⠵⠥⠾⠑⠇⠤ ⠇⠑⠝⠂⠀⠅⠁⠝⠝⠀⠩⠝⠑⠎⠀⠙⠑⠗⠀⠋⠕⠇⠛⠑⠝⠙⠑⠝⠀⠵⠩⠹⠑⠝ ⠵⠺⠊⠱⠑⠝⠀⠙⠑⠍⠀⠱⠇⠳⠎⠎⠑⠇⠤⠀⠥⠝⠙⠀⠙⠑⠍⠀⠙⠁⠗⠡⠋ ⠋⠕⠇⠛⠑⠝⠙⠑⠝⠀⠵⠩⠹⠑⠝⠀⠩⠝⠛⠑⠱⠕⠃⠑⠝⠀⠺⠑⠗⠤ ⠙⠑⠝⠒⠀⠀⠿⠲⠀⠀⠿⠖⠀⠀⠿⠦⠀⠀⠿⠴⠀⠀⠿⠰⠀⠀⠥⠝⠙⠀⠀⠿⠿ ⠶⠙⠁⠎⠀⠊⠍⠀⠇⠑⠞⠵⠞⠑⠝⠀⠋⠁⠇⠇⠀⠵⠥⠀⠧⠑⠗⠺⠑⠝⠙⠑⠝⠙⠑ ⠵⠩⠹⠑⠝⠀⠊⠾⠀⠙⠁⠎⠀⠵⠺⠩⠞⠑⠀⠧⠕⠇⠇⠵⠩⠹⠑⠝⠶⠄⠀⠩⠝ ⠎⠕⠇⠹⠑⠎⠀⠵⠩⠹⠑⠝⠀⠅⠪⠝⠝⠞⠑⠀⠡⠹⠀⠁⠇⠎⠀⠩⠝⠀⠺⠩⠞⠑⠤ ⠗⠑⠎⠀⠱⠁⠋⠞⠤⠀⠕⠙⠑⠗⠀⠎⠏⠊⠞⠵⠑⠝⠋⠕⠗⠍⠵⠩⠹⠑⠝⠀⠙⠬⠤ ⠝⠑⠝⠄⠀⠙⠬⠀⠃⠑⠙⠣⠞⠥⠝⠛⠀⠙⠑⠎⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠑⠝⠀⠵⠩⠤ ⠹⠑⠝⠎⠀⠊⠾⠀⠊⠝⠀⠩⠝⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠑⠝ ⠁⠝⠍⠑⠗⠅⠥⠝⠛⠀⠵⠥⠀⠑⠗⠇⠌⠞⠑⠗⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠄⠉ ⠁⠝⠍⠑⠗⠅⠥⠝⠛⠑⠝⠀⠵⠥⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠳⠃⠑⠗⠞⠗⠁⠤ ⠛⠥⠝⠛⠴⠶⠄ ⠀⠀⠙⠬⠀⠍⠕⠙⠥⠇⠁⠗⠀⠺⠬⠙⠑⠗⠛⠑⠛⠑⠃⠑⠝⠑⠝⠀⠏⠋⠩⠇⠑ ⠓⠁⠃⠑⠝⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠀⠋⠥⠝⠅⠞⠊⠕⠝⠑⠝⠀⠥⠝⠙⠀⠙⠑⠗⠑⠝ ⠃⠑⠵⠥⠛⠀⠵⠥⠀⠃⠑⠝⠁⠹⠃⠁⠗⠞⠑⠝⠀⠵⠩⠹⠑⠝⠀⠊⠾ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠋ ⠙⠑⠍⠑⠝⠞⠎⠏⠗⠑⠹⠑⠝⠙⠀⠝⠊⠹⠞⠀⠩⠝⠓⠩⠞⠇⠊⠹⠄⠀⠙⠁⠓⠑⠗ ⠾⠑⠓⠑⠝⠀⠎⠬⠀⠞⠩⠇⠺⠩⠎⠑⠀⠵⠺⠊⠱⠑⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠥⠝⠙⠀⠞⠩⠇⠺⠩⠎⠑⠀⠁⠝⠀⠁⠝⠙⠑⠗⠑⠀⠵⠩⠹⠑⠝⠀⠁⠝⠛⠑⠤ ⠱⠇⠕⠎⠎⠑⠝⠄⠀⠁⠇⠎⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠱⠇⠬⠮⠑⠝⠀⠎⠬⠀⠵⠥⠍ ⠃⠩⠎⠏⠬⠇⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠁⠝⠀⠙⠬⠀⠎⠽⠍⠃⠕⠇⠑⠂⠀⠙⠬ ⠎⠬⠀⠍⠕⠙⠊⠋⠊⠵⠬⠗⠑⠝⠂⠀⠁⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠓⠀⠩⠝⠋⠁⠹⠑ ⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠴⠶⠄ ⠁⠇⠎⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠤⠀⠕⠙⠑⠗⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝ ⠺⠑⠗⠙⠑⠝⠀⠎⠬⠀⠝⠁⠹⠀⠩⠝⠑⠍⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠥⠝⠙⠀⠁⠝⠤ ⠛⠑⠱⠇⠕⠎⠎⠑⠝⠀⠁⠝⠀⠙⠁⠎⠀⠋⠕⠇⠛⠑⠝⠙⠑⠀⠵⠩⠹⠑⠝⠀⠛⠑⠤ ⠱⠗⠬⠃⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠑⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠥⠝⠙⠀⠗⠑⠤ ⠇⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠴⠶⠄ ⠓⠊⠝⠺⠩⠎⠑⠒ ⠀⠀⠺⠑⠝⠝⠀⠩⠝⠀⠍⠕⠙⠥⠇⠁⠗⠑⠗⠀⠏⠋⠩⠇⠀⠍⠊⠞⠀⠩⠝⠑⠗ ⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠛⠑⠗⠊⠹⠞⠑⠞⠑⠝⠀⠎⠏⠊⠞⠵⠑⠀⠀⠿⠐⠀⠀⠑⠝⠤ ⠙⠑⠞⠂⠀⠍⠥⠎⠎⠀⠙⠁⠋⠳⠗⠀⠛⠑⠎⠕⠗⠛⠞⠀⠺⠑⠗⠙⠑⠝⠂⠀⠙⠁⠎⠎ ⠙⠬⠎⠑⠎⠀⠵⠩⠹⠑⠝⠀⠺⠑⠙⠑⠗⠀⠍⠊⠞⠀⠙⠑⠍⠀⠵⠩⠹⠑⠝⠀⠋⠳⠗ ⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠝⠥⠝⠛⠑⠝ ⠝⠕⠹⠀⠍⠊⠞⠀⠙⠑⠗⠀⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠀⠩⠝⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠤ ⠊⠧⠎⠀⠧⠑⠗⠺⠑⠹⠎⠑⠇⠞⠀⠺⠑⠗⠙⠑⠝⠀⠅⠁⠝⠝⠀⠶⠎⠬⠓⠑ ⠦⠼⠉⠄⠙⠀⠃⠑⠎⠕⠝⠙⠑⠗⠑⠀⠞⠽⠏⠕⠛⠗⠁⠋⠊⠱⠑⠀⠡⠎⠵⠩⠹⠤ ⠝⠥⠝⠛⠑⠝⠴⠀⠥⠝⠙⠀⠦⠼⠁⠚⠄⠃⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠏⠗⠕⠚⠑⠅⠤ ⠞⠊⠧⠑⠴⠶⠄ ⠀⠀⠋⠳⠗⠀⠏⠋⠩⠇⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠑⠝⠀⠎⠬⠓⠑⠀⠦⠼⠛⠄⠉ ⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠀⠧⠕⠝⠀⠏⠋⠩⠇⠑⠝⠴⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠛ ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠭⠀⠘⠒⠂⠫⠂⠞⠠⠭ \[x \mapsto \arctan x\] ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠋⠒⠠⠒⠀⠭⠀⠘⠒⠂⠩⠭ \[\overline{f}: x \mapsto \sqrt{x}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠁⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠇⠡⠭⠈⠒⠂⠏⠀⠋⠣⠭⠜⠀⠶⠼⠇⠡⠭⠈⠹⠔⠂⠏⠀⠋⠣⠭⠜⠠ ⠀⠀⠀⠀⠀⠶⠼⠇⠡⠭⠈⠹⠢⠂⠏⠀⠋⠣⠭⠜ \[\lim_{x \rightarrow p} f(x) =\lim_{x \nearrow p} f(x) =\lim_{x \searrow p} f(x)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠁⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠋⠡⠆⠀⠴⠋⠡⠂⠠⠒⠀⠨⠐⠷⠘⠙⠡⠂⠀⠒⠂⠨⠨⠗⠠ ⠀⠀⠀⠀⠀⠰⠳⠀⠭⠀⠘⠒⠂⠋⠡⠂⠣⠭⠜ \[f_{2} \circ f_{1}: \left\{ D_{1} \to \mathbb{R} \\ x \mapsto f_{1}(x)\right.\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠓ ⠼⠛⠄⠃⠀⠙⠑⠋⠊⠝⠬⠗⠞⠑⠀⠏⠋⠩⠇⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠿⠒⠒⠕⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞⠀⠩⠝⠋⠁⠹⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠿⠪⠒⠒⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠍⠊⠞⠀⠩⠝⠋⠁⠹⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠿⠪⠒⠒⠕⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠥⠝⠙⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠩⠝⠋⠁⠹⠑⠍⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠎⠏⠊⠞⠵⠑⠝ ⠿⠶⠶⠕⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞⠀⠙⠕⠏⠏⠑⠇⠞⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠶⠊⠍⠏⠇⠊⠅⠁⠞⠊⠕⠝⠎⠏⠋⠩⠇⠶ ⠿⠪⠶⠶⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠍⠊⠞⠀⠙⠕⠏⠏⠑⠇⠞⠑⠍ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠿⠪⠶⠶⠕⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠥⠝⠙⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠕⠏⠏⠑⠇⠞⠑⠍⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠎⠏⠊⠞⠵⠑⠝⠀⠶⠜⠟⠥⠊⠧⠁⠇⠑⠝⠵⠏⠋⠩⠇⠶ ⠿⠂⠂⠕⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞⠀⠛⠑⠾⠗⠊⠹⠑⠇⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠞⠑⠍⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠿⠪⠂⠂⠀⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠍⠊⠞⠀⠛⠑⠾⠗⠊⠹⠑⠇⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠞⠑⠍⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠹⠑⠗⠀⠎⠏⠊⠞⠵⠑ ⠿⠪⠂⠂⠕⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎⠀⠥⠝⠙⠀⠗⠑⠹⠞⠎⠀⠍⠊⠞ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠛⠑⠾⠗⠊⠹⠑⠇⠞⠑⠍⠀⠱⠁⠋⠞⠀⠥⠝⠙⠀⠩⠝⠋⠁⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⠑⠝⠀⠎⠏⠊⠞⠵⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠃⠊ ⠀⠀⠙⠬⠀⠺⠬⠙⠑⠗⠛⠁⠃⠑⠀⠁⠇⠎⠀⠙⠑⠋⠊⠝⠬⠗⠞⠑⠗⠀⠏⠋⠩⠇ ⠩⠛⠝⠑⠞⠀⠎⠊⠹⠀⠧⠕⠗⠀⠁⠇⠇⠑⠍⠀⠙⠕⠗⠞⠂⠀⠺⠕⠀⠙⠑⠗ ⠏⠋⠩⠇⠀⠁⠇⠎⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠤⠀⠕⠙⠑⠗⠀⠗⠑⠇⠁⠞⠊⠕⠝⠎⠤ ⠵⠩⠹⠑⠝⠀⠩⠝⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠡⠎⠙⠗⠥⠉⠅ ⠥⠝⠞⠑⠗⠞⠩⠇⠞⠄⠀⠏⠋⠩⠇⠑⠀⠁⠇⠎⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠕⠙⠑⠗ ⠵⠥⠎⠁⠞⠵⠀⠁⠝⠀⠩⠝⠑⠍⠀⠎⠽⠍⠃⠕⠇⠀⠎⠊⠝⠙⠀⠊⠍⠀⠁⠇⠇⠛⠑⠤ ⠍⠩⠝⠑⠝⠀⠃⠑⠎⠎⠑⠗⠀⠍⠊⠞⠀⠍⠕⠙⠥⠇⠁⠗⠑⠝⠀⠏⠋⠩⠇⠑⠝ ⠙⠁⠗⠵⠥⠾⠑⠇⠇⠑⠝⠄ ⠀⠀⠙⠑⠋⠊⠝⠬⠗⠞⠑⠀⠏⠋⠩⠇⠑⠀⠎⠊⠝⠙⠀⠛⠑⠝⠑⠗⠑⠇⠇⠀⠵⠺⠊⠤ ⠱⠑⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠵⠥⠀⠎⠑⠞⠵⠑⠝⠄⠀⠡⠎⠝⠁⠓⠍⠑⠝ ⠃⠑⠾⠑⠓⠑⠝⠀⠙⠕⠗⠞⠂⠀⠺⠕⠀⠃⠑⠝⠁⠹⠃⠁⠗⠞⠑⠀⠎⠽⠍⠃⠕⠇⠑ ⠙⠬⠎⠀⠝⠊⠹⠞⠀⠵⠥⠇⠁⠎⠎⠑⠝⠀⠶⠑⠞⠺⠁⠀⠅⠇⠁⠍⠍⠑⠗⠝⠶⠄ ⠋⠳⠗⠀⠏⠋⠩⠇⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠑⠝⠀⠎⠬⠓⠑⠀⠦⠼⠛⠄⠉⠀⠃⠑⠤ ⠱⠗⠊⠋⠞⠥⠝⠛⠀⠧⠕⠝⠀⠏⠋⠩⠇⠑⠝⠴⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠀⠤⠼⠁⠳⠭⠀⠶⠼⠚⠀⠪⠶⠶⠕⠀⠼⠁⠳⠭⠀⠶⠼⠁⠠ ⠀⠀⠀⠀⠀⠪⠶⠶⠕⠀⠭⠀⠶⠼⠁ \[1 -\frac{1}{x} =0 \Leftrightarrow \frac{1}{x} =1 \Leftrightarrow x =1\] ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠛⠀⠼⠄⠓⠀⠶⠶⠕⠀⠁⠒⠂⠡⠛⠀⠴⠁⠒⠂⠡⠓⠀⠶⠼⠚ \[g \perp h \Rightarrow \vec{a}_{g} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠚ \circ \vec{a}_{h} =0\] ⠼⠛⠄⠉⠀⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠀⠧⠕⠝⠀⠏⠋⠩⠇⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞⠀⠺⠑⠗⠤ ⠙⠑⠝⠀⠏⠋⠩⠇⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠑⠝⠠⠤⠀⠥⠝⠛⠑⠁⠹⠞⠑⠞ ⠊⠓⠗⠑⠎⠀⠗⠌⠍⠇⠊⠹⠑⠝⠀⠃⠑⠵⠥⠛⠎⠀⠵⠥⠍⠀⠏⠋⠩⠇⠀⠊⠝ ⠙⠑⠗⠀⠧⠕⠗⠇⠁⠛⠑⠠⠤⠀⠊⠍⠀⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝⠀⠙⠑⠝⠀⠏⠋⠩⠇ ⠾⠑⠞⠎⠀⠊⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠀⠀⠡⠋⠀⠙⠑⠝⠀⠏⠋⠩⠇⠀⠋⠕⠇⠛⠞⠀⠏⠥⠝⠅⠞⠀⠼⠙⠀⠀⠿⠈ ⠥⠝⠙⠀⠙⠬⠀⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠀⠺⠊⠗⠙⠀⠊⠝⠀⠎⠏⠑⠵⠊⠑⠇⠇⠑⠝ ⠗⠥⠝⠙⠑⠝⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠅⠇⠁⠍⠤ ⠍⠑⠗⠝⠀⠀⠿⠼⠣⠄⠄⠄⠼⠜⠀⠀⠩⠝⠛⠑⠱⠇⠕⠎⠎⠑⠝⠄⠀⠩⠝⠀⠺⠑⠹⠤ ⠎⠑⠇⠀⠵⠥⠗⠀⠞⠑⠭⠞⠱⠗⠊⠋⠞⠀⠍⠥⠎⠎⠀⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞ ⠺⠑⠗⠙⠑⠝⠄⠀⠡⠋⠀⠙⠬⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠋⠕⠇⠛⠞ ⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠩⠝⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠄ ⠀⠀⠁⠇⠞⠑⠗⠝⠁⠞⠊⠧⠀⠙⠳⠗⠋⠑⠝⠀⠚⠑⠀⠝⠁⠹⠀⠊⠝⠓⠁⠇⠞ ⠗⠥⠝⠙⠑⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠀⠿⠣ ⠥⠝⠙⠀⠀⠿⠜⠀⠀⠕⠙⠑⠗⠀⠁⠃⠑⠗⠀⠗⠥⠝⠙⠑⠀⠞⠑⠭⠞⠅⠇⠁⠍⠤ ⠍⠑⠗⠝⠀⠀⠿⠶⠄⠄⠄⠶⠀⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠧⠕⠗ ⠙⠬⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠺⠊⠗⠙⠀⠃⠩⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠱⠑⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠏⠥⠝⠅⠞⠀⠼⠙⠀⠀⠿⠈⠀⠀⠥⠝⠙⠀⠃⠩ ⠞⠑⠭⠞⠅⠇⠁⠍⠍⠑⠗⠝⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠀⠿⠠⠀⠀⠛⠑⠎⠑⠞⠵⠞⠄ ⠙⠁⠎⠀⠱⠗⠊⠋⠞⠎⠽⠾⠑⠍⠀⠊⠝⠝⠑⠗⠓⠁⠇⠃⠀⠙⠑⠗⠀⠅⠇⠁⠍⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠃⠤⠼⠛⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠁ ⠍⠑⠗⠝⠀⠑⠝⠞⠎⠏⠗⠊⠹⠞⠀⠙⠑⠗⠀⠛⠑⠺⠜⠓⠇⠞⠑⠝⠀⠅⠇⠁⠍⠤ ⠍⠑⠗⠁⠗⠞⠄ ⠀⠀⠾⠑⠓⠞⠀⠙⠬⠀⠃⠑⠱⠗⠊⠋⠞⠥⠝⠛⠀⠊⠝⠀⠙⠑⠗⠀⠧⠕⠗⠇⠁⠛⠑ ⠎⠑⠇⠃⠾⠀⠊⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠥⠝⠙⠀⠎⠊⠝⠙⠀⠙⠬⠎⠑⠀⠧⠕⠝ ⠊⠝⠓⠁⠇⠞⠇⠊⠹⠑⠗⠀⠃⠑⠙⠣⠞⠥⠝⠛⠂⠀⠺⠑⠗⠙⠑⠝⠀⠎⠬ ⠳⠃⠑⠗⠝⠕⠍⠍⠑⠝⠀⠥⠝⠙⠀⠙⠥⠗⠹⠀⠙⠬⠀⠕⠃⠑⠝⠀⠃⠑⠱⠗⠬⠃⠑⠤ ⠝⠑⠝⠀⠅⠇⠁⠍⠍⠑⠗⠝⠀⠑⠗⠛⠜⠝⠵⠞⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠉⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠑⠀⠒⠒⠕⠈⠼⠣⠖⠼⠃⠼⠜⠀⠄⠄⠄⠀⠒⠒⠕⠈⠼⠣⠄⠼⠉⠼⠜⠠ ⠀⠀⠀⠀⠀⠄⠄⠄⠀⠒⠒⠕⠈⠼⠣⠤⠼⠙⠼⠜⠀⠄⠄⠄ ⠕⠙⠑⠗ ⠀⠀⠀⠼⠑⠀⠒⠒⠕⠈⠣⠖⠼⠃⠜⠀⠄⠄⠄⠀⠒⠒⠕⠈⠣⠄⠼⠉⠜⠀⠄⠄⠄⠠ ⠀⠀⠀⠀⠀⠒⠒⠕⠈⠣⠤⠼⠙⠜⠀⠄⠄⠄ \[5 \stackrel{+2}{\longrightarrow} ... \stackrel{\cdot 3}{\longrightarrow} ... \stackrel{-4}{\longrightarrow} ...\] ⠃⠩⠎⠏⠬⠇⠀⠼⠛⠄⠉⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠉⠂⠓⠋⠀⠄⠼⠙⠂⠛⠀⠒⠒⠕⠈⠼⠣⠠⠄⠛⠑⠗⠥⠝⠙⠑⠞⠠⠄⠼⠜⠠ ⠀⠀⠀⠀⠀⠼⠙⠀⠄⠼⠙⠂⠑ ⠕⠙⠑⠗ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠃ ⠀⠀⠀⠼⠉⠂⠓⠋⠀⠄⠼⠙⠂⠛⠀⠒⠒⠕⠠⠶⠛⠑⠗⠥⠝⠙⠑⠞⠶⠠ ⠀⠀⠀⠀⠀⠼⠙⠀⠄⠼⠙⠂⠑ \[3.86 \cdot 4.7 \stackrel{\text{gerundet}} {\longrightarrow} 4 \cdot 4.5\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠛⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠙ ⠼⠓⠀⠩⠝⠋⠁⠹⠑⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑ ⠀⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠿⠘⠀⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠋⠁⠹⠑ ⠀⠀⠀⠀⠀⠀⠀⠕⠃⠑⠗⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠰⠀⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠋⠁⠹⠑ ⠀⠀⠀⠀⠀⠀⠀⠥⠝⠞⠑⠗⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠨⠀⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠀⠋⠁⠎⠎⠑⠝⠙⠑⠀⠕⠃⠑⠗⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠸⠀⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠀⠋⠁⠎⠎⠑⠝⠙⠑⠀⠥⠝⠞⠑⠗⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠨⠀⠀⠀⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠀⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠐⠀⠀⠀⠵⠺⠩⠞⠑⠎⠀⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠤ ⠀⠀⠀⠀⠀⠀⠀⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠃⠩ ⠀⠀⠀⠀⠀⠀⠀⠧⠑⠗⠱⠁⠹⠞⠑⠇⠥⠝⠛⠑⠝ ⠿⠱⠀⠀⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠀⠀⠀⠀⠀⠀⠀⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠨⠱⠀⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑ ⠀⠀⠀⠀⠀⠀⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠐⠱⠀⠀⠵⠺⠩⠞⠑⠎⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗ ⠀⠀⠀⠀⠀⠀⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠑ ⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠂⠀⠙⠬⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞ ⠗⠑⠹⠞⠎⠀⠕⠃⠑⠝⠀⠕⠙⠑⠗⠀⠗⠑⠹⠞⠎⠀⠥⠝⠞⠑⠝⠀⠁⠍⠀⠎⠽⠍⠤ ⠃⠕⠇⠀⠾⠑⠓⠑⠝ ⠿⠔⠀⠀⠀⠾⠗⠊⠹⠀⠶⠱⠗⠜⠛⠀⠕⠙⠑⠗⠀⠛⠑⠗⠁⠙⠑⠶ ⠿⠲⠀⠀⠀⠾⠑⠗⠝ ⠿⠦⠀⠀⠀⠅⠗⠣⠵⠀⠶⠱⠗⠜⠛⠶ ⠿⠖⠀⠀⠀⠏⠇⠥⠎⠵⠩⠹⠑⠝ ⠿⠤⠀⠀⠀⠍⠊⠝⠥⠎⠵⠩⠹⠑⠝ ⠿⠹⠀⠀⠀⠓⠁⠅⠑⠝⠀⠶⠧⠑⠗⠎⠊⠹⠑⠗⠥⠝⠛⠎⠍⠁⠞⠓⠑⠍⠁⠤ ⠀⠀⠀⠀⠀⠀⠀⠞⠊⠅⠶⠠⠔ ⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠂⠀⠙⠬⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞ ⠳⠃⠑⠗⠀⠕⠙⠑⠗⠀⠥⠝⠞⠑⠗⠀⠙⠑⠍⠀⠎⠽⠍⠃⠕⠇⠀⠾⠑⠓⠑⠝ ⠿⠒⠀⠀⠀⠺⠁⠁⠛⠗⠑⠹⠞⠑⠗⠀⠾⠗⠊⠹ ⠿⠢⠀⠀⠀⠱⠇⠁⠝⠛⠑⠝⠇⠊⠝⠊⠑⠀⠶⠞⠊⠇⠙⠑⠶ ⠿⠆⠀⠀⠀⠏⠥⠝⠅⠞ ⠿⠴⠀⠀⠀⠅⠗⠩⠎⠂⠀⠅⠥⠇⠇⠑⠗ ⠿⠬⠀⠀⠀⠙⠁⠹⠠⠔ ⠿⠶⠀⠀⠀⠛⠇⠩⠹⠓⠩⠞⠎⠵⠩⠹⠑⠝ ⠿⠣⠀⠀⠀⠃⠕⠛⠑⠝ ⠿⠒⠂⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠗⠑⠹⠞⠎ ⠿⠐⠒⠀⠀⠏⠋⠩⠇⠀⠝⠁⠹⠀⠇⠊⠝⠅⠎ ⠿⠹⠐⠀⠀⠅⠩⠇⠀⠍⠊⠞⠀⠎⠏⠊⠞⠵⠑⠀⠗⠑⠹⠞⠎⠠⠔ ⠿⠹⠂⠀⠀⠅⠩⠇⠀⠍⠊⠞⠀⠎⠏⠊⠞⠵⠑⠀⠇⠊⠝⠅⠎⠠⠔ ⠠⠔⠀⠡⠋⠀⠙⠬⠀⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠙⠑⠝⠀⠧⠑⠗⠎⠊⠹⠑⠗⠥⠝⠛⠎⠤ ⠀⠀⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠓⠁⠅⠑⠝⠂⠀⠙⠁⠎⠀⠙⠁⠹⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠋ ⠀⠀⠀⠙⠬⠀⠅⠩⠇⠑⠀⠍⠥⠎⠎⠀⠚⠑⠺⠩⠇⠎⠀⠩⠝⠀⠇⠑⠑⠗⠤⠀⠕⠙⠑⠗ ⠀⠀⠀⠎⠁⠞⠵⠵⠩⠹⠑⠝⠀⠋⠕⠇⠛⠑⠝⠂⠀⠙⠁⠀⠎⠬⠀⠎⠕⠝⠾⠀⠍⠊⠞ ⠀⠀⠀⠁⠝⠙⠑⠗⠑⠝⠀⠵⠩⠹⠑⠝⠀⠧⠑⠗⠺⠑⠹⠎⠑⠇⠞⠀⠺⠑⠗⠙⠑⠝ ⠀⠀⠀⠅⠪⠝⠝⠑⠝⠄ ⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠎⠊⠝⠙⠀⠵⠥⠎⠜⠞⠵⠑⠂⠀⠙⠬⠀⠊⠝ ⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠕⠃⠑⠗⠓⠁⠇⠃⠂⠀⠥⠝⠞⠑⠗⠓⠁⠇⠃ ⠕⠙⠑⠗⠀⠗⠑⠹⠞⠎⠀⠧⠕⠝⠀⠩⠝⠑⠍⠀⠎⠽⠍⠃⠕⠇⠀⠛⠑⠱⠗⠬⠃⠑⠝ ⠺⠑⠗⠙⠑⠝⠂⠀⠥⠍⠀⠙⠑⠎⠎⠑⠝⠀⠃⠑⠙⠣⠞⠥⠝⠛⠀⠵⠥⠀⠜⠝⠤ ⠙⠑⠗⠝⠄ ⠀⠀⠃⠩⠎⠏⠬⠇⠑⠀⠓⠬⠗⠋⠳⠗⠀⠎⠊⠝⠙⠒ ⠠⠤⠀⠏⠋⠩⠇⠑⠀⠳⠃⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠂⠀⠙⠬⠀⠎⠬⠀⠁⠇⠎ ⠀⠀⠀⠧⠑⠅⠞⠕⠗⠑⠝⠀⠅⠑⠝⠝⠵⠩⠹⠝⠑⠝⠄ ⠠⠤⠀⠾⠗⠊⠹⠑⠀⠳⠃⠑⠗⠀⠃⠥⠹⠾⠁⠃⠑⠝⠂⠀⠙⠬⠀⠎⠬⠀⠁⠇⠎ ⠀⠀⠀⠾⠗⠑⠉⠅⠑⠝⠀⠅⠑⠝⠝⠵⠩⠹⠝⠑⠝⠄ ⠠⠤⠀⠾⠗⠊⠹⠑⠀⠝⠁⠹⠀⠃⠥⠹⠾⠁⠃⠑⠝⠂⠀⠙⠬⠀⠎⠬⠀⠁⠇⠎ ⠀⠀⠀⠛⠑⠕⠍⠑⠞⠗⠊⠱⠑⠀⠁⠃⠃⠊⠇⠙⠥⠝⠛⠑⠝⠀⠅⠑⠝⠝⠵⠩⠹⠤ ⠀⠀⠀⠝⠑⠝⠄ ⠠⠤⠀⠾⠗⠊⠹⠑⠀⠝⠁⠹⠀⠋⠥⠝⠅⠞⠊⠕⠝⠎⠎⠽⠍⠃⠕⠇⠑⠝⠂⠀⠙⠬ ⠀⠀⠀⠙⠊⠋⠋⠑⠗⠑⠝⠞⠊⠁⠇⠁⠃⠇⠩⠞⠥⠝⠛⠑⠝⠀⠍⠁⠗⠅⠬⠗⠑⠝⠄ ⠀⠀⠞⠬⠋⠤⠀⠕⠙⠑⠗⠀⠓⠕⠹⠛⠑⠾⠑⠇⠇⠞⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠥⠝⠙ ⠵⠁⠓⠇⠑⠝⠀⠁⠝⠀⠩⠝⠑⠍⠀⠎⠽⠍⠃⠕⠇⠀⠵⠜⠓⠇⠑⠝⠀⠙⠁⠛⠑⠛⠑⠝ ⠝⠊⠹⠞⠀⠵⠥⠀⠙⠑⠝⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠄⠀⠎⠬⠀⠺⠑⠗⠙⠑⠝ ⠁⠇⠎⠀⠊⠝⠙⠊⠵⠑⠎⠀⠃⠑⠓⠁⠝⠙⠑⠇⠞⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠚⠄⠉ ⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠴⠶⠄⠀⠑⠃⠑⠝⠎⠕⠀⠺⠑⠤ ⠝⠊⠛⠀⠎⠊⠝⠙⠀⠎⠽⠍⠃⠕⠇⠑⠀⠋⠳⠗⠀⠩⠝⠓⠩⠞⠑⠝⠀⠺⠬⠀⠛⠗⠁⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠛ ⠕⠙⠑⠗⠀⠺⠊⠝⠅⠑⠇⠍⠊⠝⠥⠞⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠄ ⠀⠀⠙⠑⠗⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠳⠃⠇⠊⠹⠑⠀⠾⠗⠊⠹ ⠳⠃⠑⠗⠀⠎⠊⠹⠀⠺⠬⠙⠑⠗⠓⠕⠇⠑⠝⠙⠑⠝⠀⠵⠊⠋⠋⠑⠗⠝⠀⠥⠝⠙ ⠵⠊⠋⠋⠑⠗⠝⠋⠕⠇⠛⠑⠝⠀⠊⠝⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠝⠀⠙⠑⠵⠊⠍⠁⠇⠤ ⠃⠗⠳⠹⠑⠝⠀⠺⠊⠗⠙⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠝⠊⠹⠞ ⠙⠥⠗⠹⠀⠩⠝⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠺⠬⠙⠑⠗⠛⠑⠛⠑⠃⠑⠝⠀⠶⠎⠬⠤ ⠓⠑⠀⠦⠼⠃⠄⠁⠄⠙⠀⠏⠑⠗⠊⠕⠙⠊⠱⠑⠀⠙⠑⠵⠊⠍⠁⠇⠃⠗⠳⠹⠑⠴⠶⠄ ⠀⠀⠑⠎⠀⠺⠊⠗⠙⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠀⠵⠺⠊⠱⠑⠝ ⠩⠝⠋⠁⠹⠑⠝⠀⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠝⠀⠍⠁⠗⠅⠬⠤ ⠗⠥⠝⠛⠑⠝⠀⠥⠝⠞⠑⠗⠱⠬⠙⠑⠝⠄⠀⠩⠝⠋⠁⠹⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠤ ⠛⠑⠝⠀⠃⠑⠵⠬⠓⠑⠝⠀⠎⠊⠹⠀⠡⠋⠀⠩⠝⠀⠩⠝⠵⠑⠇⠝⠑⠎⠀⠎⠽⠍⠤ ⠃⠕⠇⠄⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠑⠗⠾⠗⠑⠉⠅⠑⠝⠀⠎⠊⠹⠀⠳⠃⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠀⠎⠽⠍⠃⠕⠇⠑⠂ ⠙⠬⠀⠎⠬⠀⠎⠕⠀⠦⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠴⠄ ⠀⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠙⠊⠗⠑⠅⠞ ⠧⠕⠗⠂⠀⠙⠬⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠥⠝⠍⠊⠞⠞⠑⠇⠤ ⠃⠁⠗⠀⠓⠊⠝⠞⠑⠗⠀⠙⠑⠍⠀⠵⠩⠹⠑⠝⠀⠃⠵⠺⠄⠀⠙⠑⠗⠀⠵⠩⠹⠑⠝⠤ ⠋⠕⠇⠛⠑⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠓⠊⠝⠺⠩⠎⠒ ⠀⠀⠙⠬⠀⠋⠗⠳⠓⠑⠗⠑⠝⠀⠎⠽⠍⠃⠕⠇⠑⠀⠋⠳⠗⠀⠅⠩⠇⠀⠍⠊⠞ ⠎⠏⠊⠞⠵⠑⠀⠗⠑⠹⠞⠎⠀⠀⠿⠈⠕⠀⠀⠥⠝⠙⠀⠎⠏⠊⠞⠵⠑ ⠇⠊⠝⠅⠎⠀⠀⠿⠈⠪⠀⠀⠺⠥⠗⠙⠑⠝⠀⠙⠥⠗⠹⠀⠙⠬⠀⠊⠝⠀⠙⠑⠗ ⠇⠊⠾⠑⠀⠡⠋⠛⠑⠋⠳⠓⠗⠞⠑⠝⠀⠎⠽⠍⠃⠕⠇⠑⠀⠑⠗⠎⠑⠞⠵⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠓ ⠼⠓⠄⠁⠀⠩⠝⠋⠁⠹⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠂⠀⠙⠬⠀⠎⠊⠹⠀⠡⠋⠀⠩⠝⠀⠩⠝⠵⠑⠇⠝⠑⠎ ⠎⠽⠍⠃⠕⠇⠀⠃⠑⠵⠬⠓⠑⠝⠂⠀⠾⠑⠓⠑⠝⠀⠊⠝⠀⠙⠑⠗ ⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠗⠑⠹⠞⠎⠀⠝⠑⠃⠑⠝⠀⠙⠑⠍⠀⠎⠽⠍⠃⠕⠇⠂ ⠥⠝⠛⠑⠁⠹⠞⠑⠞⠀⠙⠑⠎⠎⠑⠝⠂⠀⠕⠃⠀⠎⠬⠀⠊⠝⠀⠙⠑⠗ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠕⠃⠑⠗⠓⠁⠇⠃⠂⠀⠥⠝⠞⠑⠗⠓⠁⠇⠃⠀⠕⠙⠑⠗ ⠗⠑⠹⠞⠎⠀⠧⠕⠍⠀⠎⠽⠍⠃⠕⠇⠀⠾⠑⠓⠑⠝⠄ ⠀⠀⠩⠝⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠇⠩⠞⠑⠞⠀⠙⠬⠀⠍⠁⠗⠤ ⠅⠬⠗⠥⠝⠛⠀⠩⠝⠀⠥⠝⠙⠀⠛⠊⠃⠞⠀⠁⠝⠂⠀⠕⠃⠀⠎⠬⠀⠊⠝⠀⠙⠑⠗ ⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠕⠃⠑⠝⠀⠃⠵⠺⠄⠀⠕⠃⠑⠝⠀⠗⠑⠹⠞⠎⠀⠕⠙⠑⠗ ⠥⠝⠞⠑⠝⠀⠃⠵⠺⠄⠀⠥⠝⠞⠑⠝⠀⠗⠑⠹⠞⠎⠀⠾⠑⠓⠞⠄⠀⠙⠁⠎⠀⠁⠝⠤ ⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠺⠊⠗⠙⠀⠃⠩⠀⠕⠃⠑⠗⠑⠝⠀⠍⠁⠗⠤ ⠅⠬⠗⠥⠝⠛⠑⠝⠀⠳⠃⠇⠊⠹⠑⠗⠺⠩⠎⠑⠀⠺⠑⠛⠛⠑⠇⠁⠎⠎⠑⠝⠄ ⠀⠀⠊⠾⠀⠩⠝⠀⠎⠽⠍⠃⠕⠇⠀⠎⠕⠺⠕⠓⠇⠀⠍⠊⠞⠀⠍⠁⠗⠅⠬⠗⠥⠝⠤ ⠛⠑⠝⠀⠁⠇⠎⠀⠡⠹⠀⠍⠊⠞⠀⠊⠝⠙⠊⠵⠑⠎⠀⠃⠵⠺⠄⠀⠑⠭⠏⠕⠝⠑⠝⠤ ⠞⠑⠝⠀⠧⠑⠗⠎⠑⠓⠑⠝⠂⠀⠎⠕⠀⠺⠑⠗⠙⠑⠝⠀⠙⠬⠀⠍⠁⠗⠅⠬⠗⠥⠝⠤ ⠛⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇⠀⠧⠕⠗⠀⠇⠑⠞⠵⠞⠑⠗⠑⠝⠀⠛⠑⠤ ⠱⠗⠬⠃⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠚⠄⠉⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙⠀⠑⠭⠤ ⠏⠕⠝⠑⠝⠞⠑⠝⠴⠶⠄ ⠀⠀⠺⠑⠗⠙⠑⠝⠀⠁⠝⠀⠩⠝⠑⠍⠀⠓⠡⠏⠞⠎⠽⠍⠃⠕⠇⠀⠍⠑⠓⠗⠑⠗⠑ ⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠙⠑⠗⠎⠑⠇⠃⠑⠝⠀⠁⠗⠞⠀⠙⠥⠗⠹⠀⠩⠝⠑ ⠩⠝⠛⠑⠅⠇⠁⠍⠍⠑⠗⠞⠑⠀⠵⠁⠓⠇⠀⠑⠗⠎⠑⠞⠵⠞⠂⠀⠺⠊⠗⠙⠀⠙⠬⠤ ⠎⠑⠀⠁⠇⠎⠀⠊⠝⠙⠑⠭⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠉⠊ ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠋⠔⠠⠂⠀⠋⠔⠔⠠⠂⠀⠋⠔⠔⠔⠠⠂⠀⠋⠌⠣⠼⠙⠜ \[f', f'', f''', f^{(4)}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠽⠔⠔⠀⠶⠋⠣⠭⠠⠂⠀⠽⠠⠂⠀⠽⠔⠜ \[y'' =f(x,y,y')\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠘⠁⠢⠭⠢⠀⠖⠃⠢⠀⠶⠼⠚ \[\tilde{A}\tilde{x} +\tilde{b} =0\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠋⠒⠠⠒⠀⠭⠀⠘⠒⠂⠩⠭ \[\overline{f}: x \mapsto \sqrt{x}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠉⠲⠡⠅ \[{\overset{*}{c}}_{k}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠁⠔⠡⠝ \[a'_{n}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠚ ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠛ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠙⠬⠀⠾⠗⠊⠹⠤⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠾⠑⠓⠞⠀⠝⠁⠹ ⠙⠑⠍⠀⠓⠡⠏⠞⠎⠽⠍⠃⠕⠇⠀⠍⠊⠞⠀⠥⠝⠞⠑⠗⠑⠍⠀⠊⠝⠙⠑⠭⠀⠥⠝⠙ ⠑⠗⠋⠁⠎⠎⠞⠀⠎⠕⠍⠊⠞⠀⠃⠩⠙⠑⠄⠶ ⠀⠀⠀⠽⠡⠂⠘⠔ \[{y_{1}}'\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠓ ⠀⠀⠀⠽⠆⠡⠝⠈⠖⠼⠁ \[\dot{y}_{n +1}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠁⠀⠘⠃⠼⠚⠊ ⠀⠀⠍⠁⠝⠹⠍⠁⠇⠀⠺⠊⠗⠙⠀⠍⠊⠞⠀⠀⠨⠨⠟⠰⠖⠀⠀⠙⠬ ⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠏⠕⠎⠊⠞⠊⠧⠑⠝⠀⠗⠁⠞⠊⠕⠝⠁⠇⠑⠝ ⠵⠁⠓⠇⠑⠝⠀⠥⠝⠙⠀⠍⠊⠞⠀⠀⠨⠨⠟⠘⠖⠡⠴⠀⠀⠙⠬⠤ ⠎⠑⠇⠃⠑⠀⠍⠑⠝⠛⠑⠀⠍⠊⠞⠀⠙⠑⠗⠀⠵⠁⠓⠇⠀⠼⠚ ⠃⠑⠵⠩⠹⠝⠑⠞⠄ ⠕⠙⠑⠗ ⠀⠀⠍⠁⠝⠹⠍⠁⠇⠀⠺⠊⠗⠙⠀⠍⠊⠞⠀⠐⠂⠨⠨⠟⠰⠖⠠⠄⠀⠙⠬ ⠍⠑⠝⠛⠑⠀⠙⠑⠗⠀⠏⠕⠎⠊⠞⠊⠧⠑⠝⠀⠗⠁⠞⠊⠕⠝⠁⠇⠑⠝ ⠵⠁⠓⠇⠑⠝⠀⠥⠝⠙⠀⠍⠊⠞⠀⠐⠂⠨⠨⠟⠘⠖⠡⠴⠠⠄⠀⠙⠬⠤ ⠎⠑⠇⠃⠑⠀⠍⠑⠝⠛⠑⠀⠍⠊⠞⠀⠙⠑⠗⠀⠵⠁⠓⠇⠀⠼⠚ ⠃⠑⠵⠩⠹⠝⠑⠞⠄ Manchmal wird mit $\mathbb{Q}_{+}$ die Menge der positiven rationalen ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠁ Zahlen und mit $\mathbb{Q}^{+}_{0}$ dieselbe Menge mit der Zahl 0 bezeichnet. ⠼⠓⠄⠃⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑ ⠀⠀⠀⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠃⠑⠵⠬⠤ ⠓⠑⠝⠀⠎⠊⠹⠀⠡⠋⠀⠍⠑⠓⠗⠑⠗⠑⠀⠎⠽⠍⠃⠕⠇⠑⠀⠥⠝⠙⠀⠺⠑⠗⠤ ⠙⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠧⠕⠗⠀⠙⠬⠎⠑⠝ ⠛⠑⠎⠑⠞⠵⠞⠄⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠀⠎⠊⠝⠙⠀⠎⠬ ⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠚⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠞⠑⠹⠤ ⠝⠊⠅⠴⠶⠄ ⠀⠀⠙⠬⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠺⠊⠗⠙⠀⠾⠑⠞⠎⠀⠙⠥⠗⠹⠀⠩⠝⠑⠎ ⠙⠑⠗⠀⠃⠩⠙⠑⠝⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠤ ⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠕⠃⠑⠗⠑⠀⠀⠿⠨⠀⠀⠃⠵⠺⠄⠀⠥⠝⠞⠑⠤ ⠗⠑⠀⠀⠿⠸⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠄⠀⠋⠁⠇⠇⠎ ⠊⠝⠝⠑⠗⠓⠁⠇⠃⠀⠙⠑⠎⠀⠍⠁⠗⠅⠬⠗⠞⠑⠝⠀⠃⠑⠗⠩⠹⠎⠀⠺⠩⠞⠑⠤ ⠗⠑⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠕⠙⠑⠗ ⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠧⠕⠗⠅⠕⠍⠍⠑⠝⠂⠀⠍⠥⠎⠎⠀⠙⠁⠎⠀⠁⠝⠤ ⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠥⠍⠀⠙⠁⠎⠀⠵⠩⠹⠑⠝⠀⠀⠿⠨ ⠃⠵⠺⠄⠀⠀⠿⠐⠀⠀⠵⠥⠀⠃⠑⠛⠊⠝⠝⠀⠑⠗⠺⠩⠞⠑⠗⠞⠀⠥⠝⠙⠀⠁⠍ ⠱⠇⠥⠎⠎⠀⠵⠺⠊⠝⠛⠑⠝⠙⠀⠙⠁⠎⠀⠑⠝⠞⠎⠏⠗⠑⠹⠑⠝⠙⠑ ⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝⠀⠛⠑⠎⠑⠞⠵⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠶⠎⠬⠓⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠁⠤⠼⠓⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠃ ⠓⠬⠗⠵⠥⠀⠙⠬⠀⠑⠗⠇⠌⠞⠑⠗⠥⠝⠛⠀⠵⠥⠗⠀⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛ ⠧⠕⠝⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠝⠂⠀⠦⠼⠁⠚⠄⠃⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑ ⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠴⠄⠶ ⠀⠀⠙⠬⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠛⠊⠇⠞⠂⠀⠃⠊⠎⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛ ⠡⠋⠛⠑⠓⠕⠃⠑⠝⠀⠺⠊⠗⠙⠀⠙⠥⠗⠹⠒ ⠠⠤⠀⠩⠝⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝ ⠠⠤⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠠⠤⠀⠙⠁⠎⠀⠵⠩⠇⠑⠝⠑⠝⠙⠑⠠⠤⠀⠡⠮⠑⠗⠀⠃⠩⠍⠀⠵⠩⠇⠑⠝⠤ ⠀⠀⠀⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠀⠿⠈⠀⠀⠕⠙⠑⠗ ⠠⠤⠀⠩⠝⠑⠀⠺⠩⠞⠑⠗⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠀⠃⠵⠺⠄⠀⠩⠝⠀⠁⠝⠤ ⠀⠀⠀⠙⠑⠗⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧ ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠘⠥⠀⠶⠨⠣⠘⠁⠃⠀⠖⠨⠒⠘⠁⠃ \[U =\frown{AB} +\overline{AB}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠸⠒⠘⠁⠃⠀⠶⠸⠒⠘⠉⠙ \[\underline{AB} =\underline{CD}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠨⠨⠒⠘⠁⠀⠩⠄⠘⠃⠨⠱⠀⠶⠘⠁⠒⠀⠬⠄⠘⠃⠒ ⠕⠙⠑⠗ ⠀⠀⠀⠨⠒⠘⠁⠈⠩⠄⠘⠃⠀⠶⠘⠁⠒⠀⠬⠄⠘⠃⠒ \[\overline{A \cup B} =\overline{A} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠉ \cap \overline{B}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠨⠨⠒⠧⠌⠆⠨⠱⠀⠶⠠⠄⠍⠊⠞⠞⠇⠑⠗⠑⠀⠟⠥⠁⠙⠗⠁⠞⠄⠠ ⠀⠀⠀⠀⠀⠛⠑⠱⠺⠊⠝⠙⠊⠛⠅⠩⠞⠠⠄ \[\overline{v^{2}} =\text{mittlere quadrat. Geschwindigkeit}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠨⠨⠒⠂⠘⠏⠡⠴⠘⠏⠨⠱ \[\vec{P_{0}P}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠨⠒⠘⠁⠔⠘⠃⠔⠀⠈⠿⠨⠒⠘⠁⠃ \[\overline{A'B'} \parallel \overline{AB}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠛ ⠀⠀⠀⠨⠨⠒⠘⠞⠡⠂⠆⠀⠬⠄⠘⠞⠡⠂⠦⠨⠱ \[\overline{T_{12} \cap T_{18}}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠙ ⠃⠩⠎⠏⠬⠇⠀⠼⠓⠄⠃⠀⠘⠃⠼⠚⠓ ⠀⠀⠀⠨⠨⠒⠣⠘⠁⠀⠬⠄⠘⠃⠜⠀⠩⠄⠣⠘⠁⠀⠬⠄⠘⠉⠜⠠ ⠀⠀⠀⠀⠀⠩⠄⠣⠘⠃⠀⠬⠄⠘⠉⠜⠨⠱ \[\overline{(A \cap B) \cup (A \cap C)\cup (B \cap C)}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠓⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠋ ⠼⠊⠀⠃⠗⠳⠹⠑ ⠶⠶⠶⠶⠶⠶⠶⠶ ⠿⠳⠀⠀⠀⠃⠗⠥⠹⠾⠗⠊⠹ ⠿⠆⠀⠀⠀⠃⠗⠥⠹⠁⠝⠋⠁⠝⠛ ⠿⠰⠀⠀⠀⠃⠗⠥⠹⠑⠝⠙⠑ ⠿⠿⠰⠀⠀⠑⠝⠙⠑⠀⠎⠜⠍⠞⠇⠊⠹⠑⠗⠀⠃⠗⠳⠹⠑⠀⠶⠙⠁⠎⠀⠵⠺⠩⠞⠑ ⠀⠀⠀⠀⠀⠀⠀⠧⠕⠇⠇⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇⠀⠙⠑⠎⠀⠎⠽⠍⠤ ⠀⠀⠀⠀⠀⠀⠀⠃⠕⠇⠎⠄⠶ ⠼⠊⠄⠁⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠀⠥⠝⠙⠀⠛⠑⠍⠊⠱⠞⠑ ⠀⠀⠀⠀⠀⠵⠁⠓⠇⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠂⠀⠃⠩⠀⠙⠑⠝⠑⠝⠀⠎⠕⠺⠕⠓⠇⠀⠵⠜⠓⠤ ⠇⠑⠗⠀⠁⠇⠎⠀⠡⠹⠀⠝⠑⠝⠝⠑⠗⠀⠡⠎⠀⠏⠕⠎⠊⠞⠊⠧⠑⠝⠀⠛⠁⠝⠤ ⠵⠑⠝⠀⠵⠁⠓⠇⠑⠝⠀⠃⠑⠾⠑⠓⠑⠝⠂⠀⠺⠑⠗⠙⠑⠝⠀⠺⠬⠀⠋⠕⠇⠛⠞ ⠙⠁⠗⠛⠑⠾⠑⠇⠇⠞⠒ ⠀⠀⠙⠑⠗⠀⠵⠜⠓⠇⠑⠗⠀⠺⠊⠗⠙⠀⠊⠝⠀⠙⠑⠗⠀⠾⠁⠝⠙⠁⠗⠙⠤ ⠱⠗⠩⠃⠺⠩⠎⠑⠀⠛⠑⠱⠗⠬⠃⠑⠝⠀⠥⠝⠙⠀⠙⠑⠗⠀⠝⠑⠝⠝⠑⠗⠀⠊⠝ ⠙⠑⠗⠀⠛⠑⠎⠑⠝⠅⠞⠑⠝⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠕⠓⠝⠑⠀⠩⠛⠑⠝⠑⠎ ⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠥⠝⠙⠀⠕⠓⠝⠑⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠁⠝⠛⠑⠤ ⠋⠳⠛⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠤⠼⠊⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠛ ⠓⠊⠝⠺⠩⠎⠒ ⠀⠀⠎⠊⠝⠙⠀⠊⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠡⠎⠙⠗⠳⠉⠅⠑⠝ ⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠀⠍⠊⠞⠀⠃⠗⠳⠹⠑⠝⠀⠊⠝⠀⠩⠝⠋⠁⠹⠑⠗ ⠕⠙⠑⠗⠀⠡⠎⠋⠳⠓⠗⠇⠊⠹⠑⠗⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠅⠕⠍⠃⠊⠝⠬⠗⠞⠂ ⠎⠕⠀⠅⠁⠝⠝⠀⠡⠹⠀⠋⠳⠗⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠀⠙⠬⠀⠑⠝⠞⠤ ⠎⠏⠗⠑⠹⠑⠝⠙⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠛⠑⠺⠜⠓⠇⠞⠀⠺⠑⠗⠙⠑⠝⠂ ⠥⠍⠀⠁⠇⠇⠑⠀⠃⠗⠳⠹⠑⠀⠩⠝⠓⠩⠞⠇⠊⠹⠀⠵⠥⠀⠛⠑⠾⠁⠇⠞⠑⠝⠄ ⠀⠀⠃⠩⠙⠑⠀⠃⠑⠾⠁⠝⠙⠞⠩⠇⠑⠀⠩⠝⠑⠗⠀⠛⠑⠍⠊⠱⠞⠑⠝ ⠵⠁⠓⠇⠂⠀⠙⠬⠀⠛⠁⠝⠵⠑⠀⠵⠁⠓⠇⠀⠥⠝⠙⠀⠙⠑⠗⠀⠵⠁⠓⠇⠑⠝⠤ ⠃⠗⠥⠹⠂⠀⠺⠑⠗⠙⠑⠝⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠵⠁⠓⠇⠵⠩⠹⠑⠝⠀⠧⠑⠗⠤ ⠎⠑⠓⠑⠝⠀⠥⠝⠙⠀⠕⠓⠝⠑⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠁⠝⠩⠝⠁⠝⠙⠑⠗ ⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠼⠁⠆ \[\frac{1}{2}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠼⠃⠛⠒⠖ \[\frac{27}{36}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠁⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠉⠲⠀⠤⠼⠁⠒⠀⠶⠼⠊⠂⠆⠀⠤⠼⠙⠂⠆⠀⠶⠼⠑⠂⠆ \[\frac{3}{4} -\frac{1}{3} =\frac{9}{12} -\frac{4}{12} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠓ =\frac{5}{12}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠁⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠆⠼⠁⠚⠳⠤⠼⠃⠰⠀⠶⠤⠼⠑ \[\frac{10}{-2} =-5\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠁⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠼⠁⠚⠆⠀⠖⠼⠁⠚⠳⠤⠼⠃⠀⠶⠼⠚ ⠕⠙⠑⠗ ⠀⠀⠀⠆⠼⠁⠚⠳⠼⠃⠰⠀⠖⠆⠼⠁⠚⠳⠤⠼⠃⠰⠀⠶⠼⠚ \[\frac{10}{2} +\frac{10}{-2} =0\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠁⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠼⠙⠼⠁⠲ \[4\frac{1}{4}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠁⠀⠘⠃⠼⠚⠛ ⠀⠀⠀⠀⠼⠁⠼⠉⠲⠀⠖⠼⠃⠼⠁⠒⠀⠶⠼⠃⠁⠂⠆⠀⠖⠼⠃⠓⠂⠆⠠ ⠀⠀⠀⠀⠀⠀⠶⠼⠙⠊⠂⠆⠀⠶⠼⠙⠼⠁⠂⠆ ⠕⠙⠑⠗ ⠀⠀⠀⠀⠼⠁⠼⠉⠲⠀⠖⠼⠃⠼⠁⠒⠠ ⠀⠀⠀⠀⠀⠀⠶⠼⠃⠁⠂⠆⠀⠖⠼⠃⠓⠂⠆⠠ ⠀⠀⠀⠀⠀⠀⠶⠼⠙⠊⠂⠆⠠ ⠀⠀⠀⠀⠀⠀⠶⠼⠙⠼⠁⠂⠆ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠙⠊ \[1\frac{3}{4} +2\frac{1}{3} =\frac{21}{12} +\frac{28}{12} =\frac{49}{12} =4\frac{1}{12}\] ⠼⠊⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠅⠕⠍⠍⠞⠀⠺⠑⠙⠑⠗⠀⠊⠍⠀⠵⠜⠓⠇⠑⠗⠀⠝⠕⠹⠀⠊⠍⠀⠝⠑⠝⠤ ⠝⠑⠗⠀⠩⠝⠑⠎⠀⠃⠗⠥⠹⠑⠎⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠧⠕⠗⠂ ⠙⠁⠗⠋⠀⠡⠋⠀⠙⠬⠀⠁⠝⠤⠀⠥⠝⠙⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠙⠑⠗ ⠡⠎⠋⠳⠓⠗⠇⠊⠹⠑⠝⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑⠀⠧⠑⠗⠵⠊⠹⠞⠑⠞ ⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠊⠄⠉⠀⠡⠎⠋⠳⠓⠗⠇⠊⠹⠑⠀⠃⠗⠥⠹⠤ ⠱⠗⠩⠃⠺⠩⠎⠑⠴⠶⠄⠀⠙⠁⠎⠀⠎⠽⠍⠃⠕⠇⠀⠋⠳⠗⠀⠙⠑⠝ ⠃⠗⠥⠹⠾⠗⠊⠹⠀⠀⠿⠳⠀⠀⠋⠕⠇⠛⠞⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠡⠋ ⠙⠑⠝⠀⠵⠜⠓⠇⠑⠗⠄⠀⠑⠃⠑⠝⠋⠁⠇⠇⠎⠀⠕⠓⠝⠑⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠱⠇⠬⠮⠞⠀⠙⠑⠗⠀⠝⠑⠝⠝⠑⠗⠀⠙⠊⠗⠑⠅⠞⠀⠁⠝⠄ ⠀⠀⠙⠬⠎⠑⠀⠧⠑⠗⠩⠝⠋⠁⠹⠞⠑⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠊⠾⠀⠡⠹ ⠙⠕⠗⠞⠀⠵⠥⠇⠜⠎⠎⠊⠛⠂⠀⠺⠕⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠊⠍⠀⠵⠜⠓⠤ ⠇⠑⠗⠀⠕⠙⠑⠗⠀⠝⠑⠝⠝⠑⠗⠀⠙⠥⠗⠹⠀⠙⠑⠝⠀⠵⠥⠎⠁⠍⠍⠑⠝⠤ ⠓⠁⠇⠞⠑⠏⠥⠝⠅⠞⠀⠀⠿⠈⠀⠀⠑⠗⠎⠑⠞⠵⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠎⠬ ⠩⠛⠝⠑⠞⠀⠎⠊⠹⠀⠝⠊⠹⠞⠀⠋⠳⠗⠀⠅⠕⠍⠏⠇⠑⠭⠑⠀⠡⠎⠙⠗⠳⠤ ⠉⠅⠑⠂⠀⠙⠬⠀⠙⠥⠗⠹⠀⠙⠬⠀⠥⠝⠞⠑⠗⠙⠗⠳⠉⠅⠥⠝⠛⠀⠧⠕⠝ ⠇⠑⠑⠗⠗⠌⠍⠑⠝⠀⠥⠝⠳⠃⠑⠗⠎⠊⠹⠞⠇⠊⠹⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠁⠤⠼⠊⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠚ ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠁⠳⠃ \[\frac{a}{b}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠁⠳⠼⠃ \[\frac{a}{2}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠼⠁⠳⠭⠌⠒ \[\frac{1}{x^{3}}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠃⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠼⠑⠭⠳⠼⠉⠭⠈⠤⠼⠃ \[\frac{5x}{3x -2}\] ⠀⠀⠋⠳⠗⠀⠃⠩⠎⠏⠬⠇⠑⠀⠙⠑⠗⠀⠩⠝⠋⠁⠹⠑⠝⠀⠃⠗⠥⠹⠱⠗⠩⠃⠤ ⠺⠩⠎⠑⠀⠃⠩⠀⠩⠝⠓⠩⠞⠑⠝⠀⠎⠬⠓⠑⠀⠥⠝⠞⠑⠗⠀⠦⠼⠙⠀⠩⠝⠓⠩⠤ ⠞⠑⠝⠴⠀⠙⠬⠀⠃⠩⠎⠏⠬⠇⠑⠀⠼⠙⠄⠁⠀⠘⠃⠼⠚⠃⠀⠥⠝⠙⠀⠼⠙⠄⠙ ⠘⠃⠼⠚⠑⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠁ ⠼⠊⠄⠉⠀⠡⠎⠋⠳⠓⠗⠇⠊⠹⠑⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠵⠁⠓⠇⠑⠝⠤⠀⠥⠝⠙⠀⠁⠝⠙⠑⠗⠑⠀⠩⠝⠋⠁⠹⠑⠀⠃⠗⠳⠹⠑ ⠡⠎⠛⠑⠝⠕⠍⠍⠑⠝⠂⠀⠊⠾⠀⠙⠬⠀⠡⠎⠋⠳⠓⠗⠇⠊⠹⠑⠀⠃⠗⠥⠹⠤ ⠱⠗⠩⠃⠺⠩⠎⠑⠀⠵⠺⠊⠝⠛⠑⠝⠙⠀⠶⠎⠬⠓⠑⠀⠦⠼⠊⠄⠁⠀⠵⠁⠓⠤ ⠇⠑⠝⠃⠗⠳⠹⠑⠀⠥⠝⠙⠀⠛⠑⠍⠊⠱⠞⠑⠀⠵⠁⠓⠇⠑⠝⠴⠀⠎⠕⠺⠬ ⠦⠼⠊⠄⠃⠀⠩⠝⠋⠁⠹⠑⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑⠴⠶⠂⠀⠊⠝⠎⠃⠑⠤ ⠎⠕⠝⠙⠑⠗⠑⠀⠙⠁⠝⠝⠂⠀⠺⠑⠝⠝⠒ ⠠⠤⠀⠙⠑⠗⠀⠵⠜⠓⠇⠑⠗⠀⠕⠙⠑⠗⠀⠙⠑⠗⠀⠝⠑⠝⠝⠑⠗⠀⠩⠝ ⠀⠀⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠑⠝⠞⠓⠜⠇⠞ ⠠⠤⠀⠙⠑⠗⠀⠵⠜⠓⠇⠑⠗⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠵⠩⠤ ⠀⠀⠀⠹⠑⠝⠀⠃⠑⠛⠊⠝⠝⠞ ⠠⠤⠀⠩⠝⠀⠃⠗⠥⠹⠀⠩⠝⠑⠝⠀⠺⠩⠞⠑⠗⠑⠝⠀⠃⠗⠥⠹⠀⠑⠝⠞⠓⠜⠇⠞ ⠠⠤⠀⠧⠕⠗⠀⠕⠙⠑⠗⠀⠝⠁⠹⠀⠙⠑⠍⠀⠃⠗⠥⠹⠀⠅⠩⠝⠀⠇⠑⠑⠗⠗⠡⠍ ⠀⠀⠀⠾⠑⠓⠞ ⠀⠀⠙⠑⠗⠀⠃⠗⠥⠹⠀⠺⠊⠗⠙⠀⠍⠊⠞⠀⠙⠑⠍⠀⠃⠗⠥⠹⠁⠝⠋⠁⠝⠛⠤ ⠵⠩⠹⠑⠝⠀⠀⠿⠆⠀⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠂⠀⠙⠁⠎⠀⠥⠝⠍⠊⠞⠞⠑⠇⠤ ⠃⠁⠗⠀⠧⠕⠗⠀⠙⠑⠍⠀⠵⠜⠓⠇⠑⠗⠀⠾⠑⠓⠞⠄⠀⠙⠁⠎⠀⠥⠝⠍⠊⠞⠤ ⠞⠑⠇⠃⠁⠗⠀⠓⠊⠝⠞⠑⠗⠀⠙⠑⠍⠀⠝⠑⠝⠝⠑⠗⠀⠾⠑⠓⠑⠝⠙⠑ ⠃⠗⠥⠹⠑⠝⠙⠑⠵⠩⠹⠑⠝⠀⠀⠿⠰⠀⠀⠱⠇⠬⠮⠞⠀⠊⠓⠝⠀⠁⠃⠄⠀⠊⠝ ⠃⠑⠵⠥⠛⠀⠡⠋⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠙⠬⠀⠃⠗⠥⠹⠁⠝⠤ ⠋⠁⠝⠛⠤⠀⠥⠝⠙⠀⠠⠤⠑⠝⠙⠑⠵⠩⠹⠑⠝⠀⠺⠬⠀⠅⠇⠁⠍⠍⠑⠗⠝ ⠃⠑⠓⠁⠝⠙⠑⠇⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠃ ⠀⠀⠙⠁⠎⠀⠎⠽⠍⠃⠕⠇⠀⠋⠳⠗⠀⠙⠑⠝⠀⠃⠗⠥⠹⠾⠗⠊⠹⠀⠀⠿⠳ ⠾⠑⠓⠞⠀⠵⠺⠊⠱⠑⠝⠀⠵⠜⠓⠇⠑⠗⠀⠥⠝⠙⠀⠝⠑⠝⠝⠑⠗⠄⠀⠁⠇⠇⠤ ⠛⠑⠍⠩⠝⠀⠺⠊⠗⠙⠀⠑⠎⠀⠡⠋⠀⠃⠩⠙⠑⠝⠀⠎⠩⠞⠑⠝⠀⠧⠕⠝ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠥⠍⠛⠑⠃⠑⠝⠄⠀⠡⠋⠀⠙⠬⠀⠃⠩⠙⠑⠝⠀⠇⠑⠑⠗⠤ ⠵⠩⠹⠑⠝⠀⠙⠁⠗⠋⠀⠝⠥⠗⠀⠧⠑⠗⠵⠊⠹⠞⠑⠞⠀⠺⠑⠗⠙⠑⠝⠂ ⠺⠑⠝⠝⠀⠺⠑⠙⠑⠗⠀⠊⠍⠀⠵⠜⠓⠇⠑⠗⠀⠝⠕⠹⠀⠊⠍⠀⠝⠑⠝⠝⠑⠗ ⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠧⠕⠗⠅⠕⠍⠍⠞⠄⠀⠑⠎⠀⠙⠁⠗⠋⠀⠝⠊⠹⠞ ⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠃⠩⠃⠑⠓⠁⠇⠞⠑⠝⠀⠥⠝⠙⠀⠡⠋⠀⠙⠁⠎ ⠁⠝⠙⠑⠗⠑⠀⠧⠑⠗⠵⠊⠹⠞⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄ ⠀⠀⠙⠁⠎⠀⠃⠗⠥⠹⠁⠝⠋⠁⠝⠛⠵⠩⠹⠑⠝⠀⠙⠁⠗⠋⠀⠝⠊⠹⠞⠀⠕⠓⠝⠑ ⠙⠁⠎⠀⠃⠗⠥⠹⠑⠝⠙⠑⠵⠩⠹⠑⠝⠀⠧⠑⠗⠺⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝ ⠥⠝⠙⠀⠥⠍⠛⠑⠅⠑⠓⠗⠞⠂⠀⠁⠃⠑⠗⠀⠎⠬⠓⠑⠀⠦⠼⠊⠄⠙⠀⠍⠑⠓⠗⠤ ⠋⠁⠹⠃⠗⠳⠹⠑⠴⠀⠋⠳⠗⠀⠙⠑⠝⠀⠁⠃⠱⠇⠥⠎⠎⠀⠧⠕⠝⠀⠍⠑⠓⠗⠤ ⠋⠁⠹⠃⠗⠳⠹⠑⠝⠄ ⠀⠀⠺⠑⠝⠝⠀⠃⠩⠎⠏⠬⠇⠎⠺⠩⠎⠑⠀⠙⠁⠎⠀⠃⠗⠥⠹⠁⠝⠋⠁⠝⠛⠵⠩⠤ ⠹⠑⠝⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠓⠊⠝⠞⠑⠗⠀⠩⠝⠑⠍⠀⠎⠽⠍⠃⠕⠇ ⠾⠑⠓⠞⠀⠥⠝⠙⠀⠩⠝⠑⠀⠧⠑⠗⠺⠑⠹⠎⠇⠥⠝⠛⠀⠍⠊⠞⠀⠙⠑⠍ ⠍⠁⠗⠅⠬⠗⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠏⠥⠝⠅⠞⠀⠀⠿⠆⠀⠀⠕⠙⠑⠗ ⠙⠑⠗⠀⠵⠊⠋⠋⠑⠗⠀⠼⠃⠀⠀⠿⠆⠀⠀⠊⠝⠀⠛⠑⠎⠑⠝⠅⠞⠑⠗ ⠱⠗⠩⠃⠺⠩⠎⠑⠀⠍⠪⠛⠇⠊⠹⠀⠊⠾⠂⠀⠺⠊⠗⠙⠀⠵⠺⠊⠱⠑⠝⠀⠙⠬⠤ ⠎⠑⠝⠀⠵⠩⠹⠑⠝⠀⠙⠑⠗⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠏⠥⠝⠅⠤ ⠞⠑⠀⠀⠿⠈⠀⠀⠩⠝⠛⠑⠋⠳⠛⠞⠀⠶⠎⠬⠓⠑⠀⠦⠼⠓⠀⠩⠝⠋⠁⠹⠑ ⠥⠝⠙⠀⠵⠥⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠴⠶⠄ ⠀⠀⠋⠕⠇⠛⠞⠀⠩⠝⠀⠃⠥⠹⠾⠁⠃⠑⠀⠡⠋⠀⠙⠁⠎⠀⠃⠗⠥⠹⠑⠝⠙⠑⠤ ⠵⠩⠹⠑⠝⠂⠀⠙⠁⠗⠋⠀⠙⠬⠎⠑⠎⠀⠝⠊⠹⠞⠀⠍⠊⠞⠀⠙⠑⠗⠀⠁⠝⠤ ⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠛⠗⠬⠹⠊⠱⠑⠀⠃⠥⠹⠾⠁⠃⠑⠝⠀⠧⠑⠗⠤ ⠺⠑⠹⠎⠑⠇⠞⠀⠺⠑⠗⠙⠑⠝⠀⠅⠪⠝⠝⠑⠝⠄⠀⠙⠁⠓⠑⠗⠀⠺⠊⠗⠙⠀⠩⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠉ ⠇⠁⠞⠩⠝⠊⠱⠑⠗⠀⠅⠇⠩⠝⠃⠥⠹⠾⠁⠃⠑⠀⠊⠍⠀⠁⠝⠱⠇⠥⠎⠎⠀⠁⠝ ⠙⠁⠎⠀⠃⠗⠥⠹⠑⠝⠙⠑⠵⠩⠹⠑⠝⠀⠍⠊⠞⠀⠏⠥⠝⠅⠞⠀⠼⠋⠀⠀⠿⠠ ⠁⠝⠛⠑⠅⠳⠝⠙⠊⠛⠞⠀⠥⠝⠙⠀⠵⠺⠊⠱⠑⠝⠀⠙⠑⠍⠀⠃⠗⠥⠹⠑⠝⠙⠑⠤ ⠵⠩⠹⠑⠝⠀⠥⠝⠙⠀⠙⠬⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠋⠳⠗⠀⠛⠗⠕⠮⠤ ⠃⠥⠹⠾⠁⠃⠑⠝⠀⠙⠑⠗⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠏⠥⠝⠅⠞⠀⠀⠿⠈ ⠩⠝⠛⠑⠋⠳⠛⠞⠀⠶⠎⠬⠓⠑⠀⠦⠼⠁⠄⠃⠀⠞⠗⠑⠝⠝⠑⠝⠀⠥⠝⠙⠀⠵⠥⠤ ⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠡⠎⠙⠗⠳⠉⠅⠑⠴ ⠎⠕⠺⠬⠀⠃⠩⠎⠏⠬⠇⠑⠀⠼⠉⠄⠃⠀⠘⠃⠼⠚⠋⠀⠥⠝⠙⠀⠼⠁⠁⠄⠉ ⠘⠃⠼⠚⠙⠠⠶⠄ ⠓⠊⠝⠺⠩⠎⠒ ⠀⠀⠑⠝⠞⠛⠑⠛⠑⠝⠀⠙⠑⠗⠀⠋⠗⠳⠓⠑⠗⠑⠝⠀⠏⠗⠁⠭⠊⠎⠀⠍⠳⠎⠤ ⠎⠑⠝⠀⠁⠇⠇⠑⠀⠵⠁⠓⠇⠑⠝⠀⠥⠝⠍⠊⠞⠞⠑⠇⠃⠁⠗⠀⠝⠁⠹⠀⠙⠑⠍ ⠃⠗⠥⠹⠾⠗⠊⠹⠀⠊⠝⠀⠙⠑⠗⠀⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑⠀⠛⠑⠤ ⠱⠗⠬⠃⠑⠝⠀⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠃⠄⠁⠄⠁⠀⠵⠁⠓⠇⠑⠝ ⠊⠝⠀⠾⠁⠝⠙⠁⠗⠙⠱⠗⠩⠃⠺⠩⠎⠑⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠉⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠆⠤⠁⠳⠃⠰ ⠕⠙⠑⠗ ⠀⠀⠀⠆⠤⠁⠀⠳⠀⠃⠰ \[\frac{-a}{b}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠉⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠘⠁⠀⠶⠆⠓⠃⠳⠼⠃⠰⠸⠍⠌⠆ \[A =\frac{hb}{2}\text{m}^{2}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠙ ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠉⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠆⠼⠑⠭⠀⠳⠀⠼⠉⠭⠀⠤⠼⠃⠰ \[\frac{5x}{3x -2}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠉⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠆⠼⠙⠭⠌⠆⠀⠖⠼⠉⠭⠀⠤⠼⠁⠀⠳⠀⠣⠭⠀⠖⠼⠃⠜⠈ ⠀⠀⠀⠀⠀⠣⠭⠀⠤⠼⠁⠜⠌⠆⠰⠀⠶⠁⠳⠭⠈⠖⠼⠃⠀⠖⠃⠳⠭⠈⠤⠼⠁⠠ ⠀⠀⠀⠀⠀⠖⠉⠳⠣⠭⠈⠤⠼⠁⠜⠌⠆ ⠕⠙⠑⠗ ⠀⠀⠀⠆⠼⠙⠭⠌⠆⠀⠖⠼⠉⠭⠀⠤⠼⠁⠀⠳⠀⠣⠭⠀⠖⠼⠃⠜⠈ ⠀⠀⠀⠀⠀⠣⠭⠀⠤⠼⠁⠜⠌⠆⠰⠀⠶⠆⠁⠀⠳⠀⠭⠀⠖⠼⠃⠰⠠ ⠀⠀⠀⠀⠀⠖⠆⠃⠀⠳⠀⠭⠀⠤⠼⠁⠰⠀⠖⠆⠉⠀⠳⠀⠣⠭⠀⠤⠼⠁⠜⠌⠆⠰ \[\frac{4x^2 +3x -1}{(x +2)(x -1)^2} =\frac{a}{x +2} +\frac{b}{x -1} +\frac{c}{(x -1)^2}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠉⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠆⠭⠀⠳⠀⠭⠌⠆⠀⠖⠽⠌⠆⠰⠠ ⠀⠀⠀⠀⠀⠄⠣⠆⠼⠃⠭⠀⠳⠀⠭⠀⠖⠽⠰⠀⠤⠆⠭⠀⠤⠽⠀⠳⠀⠭⠰⠜ \[\frac{x}{x^2 +y^2} \cdot \left(\frac{2x}{x +y} -\frac{x -y}{x}\right)\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠑ ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠉⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠭⠈⠆⠭⠀⠖⠼⠁⠀⠳⠀⠭⠌⠆⠀⠤⠼⠁⠰ \[x\frac{x +1}{x^{2} -1}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠉⠀⠘⠃⠼⠚⠛ ⠀⠀⠀⠆⠁⠌⠆⠀⠖⠃⠌⠆⠀⠳⠀⠼⠉⠣⠁⠀⠤⠃⠜⠰⠠⠭ \[\frac{a^{2} +b^{2}}{3(a -b)}x\] ⠀⠀⠎⠬⠓⠑⠀⠡⠹⠀⠃⠩⠎⠏⠬⠇⠑⠀⠼⠁⠙⠄⠃⠀⠘⠃⠼⠚⠑⠀⠥⠝⠙ ⠼⠁⠁⠄⠉⠀⠘⠃⠼⠚⠙⠄ ⠼⠊⠄⠙⠀⠍⠑⠓⠗⠋⠁⠹⠃⠗⠳⠹⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠃⠩⠀⠩⠝⠑⠗⠀⠧⠑⠗⠱⠁⠹⠞⠑⠇⠥⠝⠛⠀⠧⠕⠝⠀⠃⠗⠳⠹⠑⠝ ⠍⠥⠎⠎⠀⠁⠝⠁⠇⠕⠛⠀⠙⠑⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠝⠀⠅⠇⠁⠍⠤ ⠍⠑⠗⠗⠑⠛⠑⠇⠝⠀⠚⠑⠙⠑⠗⠀⠃⠗⠥⠹⠀⠩⠝⠵⠑⠇⠝⠀⠍⠊⠞⠀⠩⠝⠑⠍ ⠃⠗⠥⠹⠁⠝⠋⠁⠝⠛⠵⠩⠹⠑⠝⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠀⠥⠝⠙⠀⠍⠊⠞ ⠩⠝⠑⠍⠀⠃⠗⠥⠹⠑⠝⠙⠑⠵⠩⠹⠑⠝⠀⠁⠃⠛⠑⠱⠇⠕⠎⠎⠑⠝⠀⠺⠑⠗⠤ ⠙⠑⠝⠄ ⠀⠀⠑⠝⠙⠑⠝⠀⠁⠇⠇⠑⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠑⠝⠀⠃⠗⠳⠹⠑⠀⠁⠝ ⠙⠑⠗⠎⠑⠇⠃⠑⠝⠀⠾⠑⠇⠇⠑⠂⠀⠅⠁⠝⠝⠀⠙⠬⠀⠗⠩⠓⠑⠀⠙⠑⠗ ⠃⠗⠥⠹⠑⠝⠙⠑⠵⠩⠹⠑⠝⠀⠙⠥⠗⠹⠀⠙⠁⠎⠀⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠙⠑⠝ ⠁⠃⠱⠇⠥⠎⠎⠀⠎⠜⠍⠞⠇⠊⠹⠑⠗⠀⠃⠗⠳⠹⠑⠀⠀⠿⠿⠰⠀⠀⠑⠗⠤ ⠎⠑⠞⠵⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠶⠁⠝⠍⠄⠒⠀⠙⠁⠎⠀⠵⠺⠩⠞⠑⠀⠧⠕⠇⠇⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠉⠤⠼⠊⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠋ ⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇⠀⠙⠑⠎⠀⠎⠽⠍⠃⠕⠇⠎⠄⠶ ⠀⠀⠃⠗⠳⠹⠑⠀⠡⠎⠀⠏⠕⠎⠊⠞⠊⠧⠑⠝⠀⠛⠁⠝⠵⠑⠝⠀⠵⠁⠓⠇⠑⠝ ⠙⠳⠗⠋⠑⠝⠀⠡⠹⠀⠊⠝⠝⠑⠗⠓⠁⠇⠃⠀⠧⠕⠝⠀⠁⠝⠙⠑⠗⠑⠝⠀⠃⠗⠳⠤ ⠹⠑⠝⠀⠊⠝⠀⠙⠑⠗⠀⠳⠃⠇⠊⠹⠑⠝⠀⠱⠗⠩⠃⠺⠩⠎⠑⠀⠛⠑⠱⠗⠬⠃⠑⠝ ⠺⠑⠗⠙⠑⠝⠀⠶⠎⠬⠓⠑⠀⠦⠼⠊⠄⠁⠀⠵⠁⠓⠇⠑⠝⠃⠗⠳⠹⠑⠀⠥⠝⠙ ⠛⠑⠍⠊⠱⠞⠑⠀⠵⠁⠓⠇⠑⠝⠴⠶⠄⠀⠡⠹⠀⠃⠗⠳⠹⠑⠀⠊⠝⠀⠙⠑⠗ ⠩⠝⠋⠁⠹⠑⠝⠀⠃⠗⠥⠹⠱⠗⠩⠃⠺⠩⠎⠑⠀⠎⠊⠝⠙⠀⠍⠪⠛⠇⠊⠹⠂ ⠚⠑⠙⠕⠹⠀⠝⠥⠗⠀⠍⠊⠞⠀⠛⠗⠕⠮⠑⠗⠀⠧⠕⠗⠎⠊⠹⠞⠀⠩⠝⠵⠥⠤ ⠎⠑⠞⠵⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠙⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠆⠆⠁⠳⠭⠰⠀⠳⠀⠆⠃⠳⠭⠌⠒⠰⠰ \[\frac{a /x}{b /x^{3}}\] oder \[\frac{\frac{a}{x}} {\frac{b}{x^{3}}}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠙⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠆⠼⠉⠲⠀⠤⠼⠁⠒⠀⠳⠀⠼⠁⠆⠀⠖⠼⠁⠒⠀⠤⠼⠁⠲⠰ \[\frac{\frac{3}{4} -\frac{1}{3}} {\frac{1}{2} +\frac{1}{3} -\frac{1}{4}}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠛ ⠃⠩⠎⠏⠬⠇⠀⠼⠊⠄⠙⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠆⠥⠀⠤⠆⠼⠁⠳⠥⠰⠀⠳⠀⠥⠀⠤⠆⠥⠀⠳⠀⠥⠀⠖⠆⠼⠁⠳⠥⠿⠰ \[\frac{u -\frac{1}{u}}{u -\frac{u}{u +\frac{1}{u}}}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠊⠄⠙⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠓ ⠼⠁⠚⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠞⠑⠹⠝⠊⠅ ⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶⠶ ⠿⠩⠀⠄⠄⠄⠄⠄⠄⠀⠀⠺⠥⠗⠵⠑⠇ ⠿⠌⠀⠄⠄⠄⠄⠄⠄⠀⠀⠕⠃⠑⠗⠑⠗⠀⠊⠝⠙⠑⠭⠀⠶⠓⠊⠝⠞⠑⠝⠶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠕⠙⠑⠗⠀⠑⠭⠏⠕⠝⠑⠝⠞ ⠿⠡⠀⠄⠄⠄⠄⠄⠄⠀⠀⠥⠝⠞⠑⠗⠑⠗⠀⠊⠝⠙⠑⠭⠀⠶⠓⠊⠝⠞⠑⠝⠶ ⠿⠌⠀⠀⠕⠙⠑⠗ ⠿⠼⠌⠀⠄⠄⠄⠄⠄⠀⠀⠧⠕⠗⠙⠑⠗⠑⠗⠀⠕⠃⠑⠗⠑⠗⠀⠊⠝⠙⠑⠭ ⠿⠡⠀⠀⠕⠙⠑⠗ ⠿⠼⠡⠀⠄⠄⠄⠄⠄⠀⠀⠧⠕⠗⠙⠑⠗⠑⠗⠀⠥⠝⠞⠑⠗⠑⠗⠀⠊⠝⠙⠑⠭ ⠿⠨⠀⠄⠄⠄⠄⠄⠄⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠕⠃⠑⠗⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠸⠀⠄⠄⠄⠄⠄⠄⠀⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠵⠥⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠎⠁⠍⠍⠑⠝⠋⠁⠎⠎⠑⠝⠙⠑⠀⠥⠝⠞⠑⠗⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝ ⠿⠱⠀⠄⠄⠄⠄⠄⠄⠀⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠋⠁⠹⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑ ⠿⠨⠀⠄⠄⠄⠄⠄⠄⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠿⠐⠀⠄⠄⠄⠄⠄⠄⠀⠀⠵⠺⠩⠞⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠧⠑⠗⠾⠜⠗⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝ ⠿⠨⠱⠀⠀⠃⠵⠺⠄ ⠿⠐⠱⠀⠄⠄⠄⠄⠄⠀⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠑⠊ ⠿⠿⠱⠀⠄⠄⠄⠄⠄⠀⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠎⠜⠍⠞⠇⠊⠹⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠶⠙⠁⠎⠀⠵⠺⠩⠞⠑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠧⠕⠇⠇⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇⠀⠙⠑⠎ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠵⠩⠹⠑⠝⠎⠄⠶ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠺⠊⠗⠙⠀⠙⠬⠀⠃⠑⠙⠣⠞⠥⠝⠛ ⠩⠝⠑⠎⠀⠎⠽⠍⠃⠕⠇⠎⠀⠙⠥⠗⠹⠀⠓⠕⠹⠤⠀⠃⠵⠺⠄⠀⠞⠬⠋⠾⠑⠇⠤ ⠇⠥⠝⠛⠀⠛⠑⠜⠝⠙⠑⠗⠞⠄⠀⠩⠝⠀⠃⠩⠎⠏⠬⠇⠀⠓⠬⠗⠋⠳⠗⠀⠎⠊⠝⠙ ⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠄⠀⠍⠁⠝⠹⠑⠀⠎⠽⠍⠃⠕⠤ ⠇⠑⠀⠅⠪⠝⠝⠑⠝⠀⠊⠝⠀⠙⠬⠀⠇⠜⠝⠛⠑⠀⠛⠑⠵⠕⠛⠑⠝⠀⠺⠑⠗⠤ ⠙⠑⠝⠂⠀⠥⠍⠀⠵⠥⠀⠵⠩⠛⠑⠝⠂⠀⠺⠬⠀⠺⠩⠞⠀⠊⠓⠗⠑⠀⠺⠊⠗⠤ ⠅⠥⠝⠛⠀⠗⠩⠹⠞⠄⠀⠙⠬⠎⠀⠊⠾⠀⠃⠩⠍⠀⠺⠥⠗⠵⠑⠇⠵⠩⠹⠑⠝ ⠥⠝⠙⠀⠧⠑⠗⠱⠬⠙⠑⠝⠑⠝⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠙⠑⠗⠀⠋⠁⠇⠇⠄ ⠀⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠊⠾⠀⠩⠝⠑⠀⠏⠓⠽⠎⠊⠱⠑ ⠓⠕⠹⠤⠀⠃⠵⠺⠄⠀⠞⠬⠋⠾⠑⠇⠇⠥⠝⠛⠀⠩⠝⠑⠎⠀⠎⠽⠍⠃⠕⠇⠎ ⠝⠊⠹⠞⠀⠍⠪⠛⠇⠊⠹⠄⠀⠑⠃⠑⠝⠎⠕⠀⠅⠁⠝⠝⠀⠅⠩⠝⠀⠎⠽⠍⠃⠕⠇ ⠳⠃⠑⠗⠀⠁⠝⠙⠑⠗⠑⠀⠓⠊⠝⠺⠑⠛⠛⠑⠵⠕⠛⠑⠝⠀⠺⠑⠗⠙⠑⠝⠄ ⠙⠁⠓⠑⠗⠀⠛⠗⠩⠋⠞⠀⠙⠬⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠡⠋⠀⠩⠝⠑ ⠩⠛⠑⠝⠑⠀⠞⠑⠹⠝⠊⠅⠀⠵⠥⠗⠳⠉⠅⠂⠀⠥⠍⠀⠙⠬⠎⠑⠇⠃⠑⠀⠃⠑⠤ ⠙⠣⠞⠥⠝⠛⠀⠩⠝⠙⠊⠍⠑⠝⠎⠊⠕⠝⠁⠇⠀⠺⠬⠙⠑⠗⠵⠥⠛⠑⠃⠑⠝⠒ ⠙⠬⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠞⠑⠹⠝⠊⠅⠄ ⠀⠀⠩⠝⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠀⠺⠊⠗⠙⠀⠙⠥⠗⠹⠀⠃⠗⠁⠊⠇⠇⠑⠵⠩⠤ ⠹⠑⠝⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠂⠀⠺⠑⠇⠹⠑⠀⠙⠬⠀⠓⠕⠹⠤⠀⠕⠙⠑⠗ ⠞⠬⠋⠾⠑⠇⠇⠥⠝⠛⠀⠁⠝⠵⠩⠛⠑⠝⠀⠃⠵⠺⠄⠀⠙⠁⠎⠀⠍⠁⠞⠓⠑⠍⠁⠤ ⠞⠊⠱⠑⠀⠎⠽⠍⠃⠕⠇⠀⠙⠁⠗⠾⠑⠇⠇⠑⠝⠄⠀⠙⠁⠗⠡⠋⠀⠋⠕⠇⠛⠞ ⠙⠑⠗⠀⠩⠛⠑⠝⠞⠇⠊⠹⠑⠀⠡⠎⠙⠗⠥⠉⠅⠄⠀⠙⠬⠀⠺⠊⠗⠅⠥⠝⠛ ⠙⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠎⠀⠛⠊⠇⠞⠀⠃⠊⠎⠀⠵⠥⠍⠀⠑⠝⠞⠎⠏⠗⠑⠤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠚ ⠹⠑⠝⠙⠑⠝⠀⠁⠃⠅⠳⠝⠙⠊⠛⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠃⠊⠎⠀⠎⠬ ⠙⠥⠗⠹⠀⠩⠝⠀⠁⠝⠙⠑⠗⠑⠎⠀⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠩⠝⠑⠀⠁⠝⠙⠑⠤ ⠗⠑⠀⠁⠝⠅⠳⠝⠙⠊⠛⠥⠝⠛⠀⠡⠋⠛⠑⠓⠕⠃⠑⠝⠀⠺⠊⠗⠙⠄ ⠀⠀⠑⠎⠀⠺⠊⠗⠙⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠞⠑⠹⠝⠊⠱⠀⠵⠺⠊⠱⠑⠝ ⠩⠝⠋⠁⠹⠑⠝⠀⠥⠝⠙⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠝⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠝ ⠥⠝⠞⠑⠗⠱⠬⠙⠑⠝⠄⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑ ⠅⠪⠝⠝⠑⠝⠀⠃⠑⠾⠊⠍⠍⠞⠑⠀⠑⠇⠑⠍⠑⠝⠞⠑⠀⠑⠝⠞⠓⠁⠇⠞⠑⠝⠂ ⠙⠬⠀⠃⠩⠀⠩⠝⠋⠁⠹⠑⠝⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠝⠀⠝⠊⠹⠞⠀⠵⠥⠤ ⠇⠜⠎⠎⠊⠛⠀⠎⠊⠝⠙⠄ ⠼⠁⠚⠄⠁⠀⠩⠝⠋⠁⠹⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠩⠝⠀⠩⠝⠋⠁⠹⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠀⠺⠊⠗⠙⠀⠙⠥⠗⠹⠀⠙⠁⠎ ⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠙⠁⠎⠀⠃⠑⠞⠗⠑⠋⠋⠑⠝⠙⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧ ⠩⠝⠛⠑⠇⠩⠞⠑⠞⠄⠀⠑⠎⠀⠙⠁⠗⠋⠀⠅⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠥⠝⠙ ⠅⠩⠝⠀⠺⠩⠞⠑⠗⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠀⠑⠝⠞⠓⠁⠇⠞⠑⠝⠄⠀⠙⠬ ⠺⠊⠗⠅⠥⠝⠛⠀⠺⠊⠗⠙⠀⠙⠥⠗⠹⠀⠩⠝⠑⠎⠀⠙⠑⠗⠀⠋⠕⠇⠛⠑⠝⠙⠑⠝ ⠑⠇⠑⠍⠑⠝⠞⠑⠀⠡⠋⠛⠑⠓⠕⠃⠑⠝⠒ ⠠⠤⠀⠩⠝⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝ ⠠⠤⠀⠙⠁⠎⠀⠵⠩⠇⠑⠝⠑⠝⠙⠑⠠⠤⠀⠡⠮⠑⠗⠀⠃⠩⠍⠀⠵⠩⠇⠑⠝⠤ ⠀⠀⠀⠞⠗⠑⠝⠝⠵⠩⠹⠑⠝⠀⠀⠿⠈ ⠠⠤⠀⠩⠝⠑⠝⠀⠃⠗⠥⠹⠾⠗⠊⠹⠀⠀⠿⠳ ⠠⠤⠀⠩⠝⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠎ ⠀⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧ ⠠⠤⠀⠩⠝⠀⠺⠩⠞⠑⠗⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠤⠼⠁⠚⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠁ ⠠⠤⠀⠙⠁⠎⠀⠑⠝⠙⠑⠀⠩⠝⠑⠗⠀⠵⠁⠓⠇⠀⠊⠝⠀⠙⠑⠗⠀⠛⠑⠎⠑⠝⠅⠤ ⠀⠀⠀⠞⠑⠝⠀⠱⠗⠩⠃⠺⠩⠎⠑ ⠠⠤⠀⠩⠝⠑⠀⠱⠇⠬⠮⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠂⠀⠺⠑⠝⠝⠀⠙⠬ ⠀⠀⠀⠪⠋⠋⠝⠑⠝⠙⠑⠀⠅⠇⠁⠍⠍⠑⠗⠀⠎⠊⠹⠀⠝⠊⠹⠞⠀⠡⠹⠀⠊⠍ ⠀⠀⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠀⠃⠑⠋⠊⠝⠙⠑⠞ ⠀⠀⠊⠝⠀⠁⠇⠇⠑⠝⠀⠁⠝⠙⠑⠗⠑⠝⠀⠋⠜⠇⠇⠑⠝⠀⠍⠥⠎⠎⠀⠙⠁⠎ ⠑⠝⠙⠑⠀⠙⠑⠎⠀⠛⠑⠇⠞⠥⠝⠛⠎⠃⠑⠗⠩⠹⠎⠀⠍⠊⠞⠀⠙⠑⠍⠀⠵⠩⠤ ⠹⠑⠝⠀⠀⠿⠱⠀⠀⠃⠑⠑⠝⠙⠑⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠊⠾⠀⠙⠁⠎⠀⠑⠝⠙⠑ ⠙⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠎⠀⠡⠹⠀⠕⠓⠝⠑⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝ ⠩⠝⠙⠣⠞⠊⠛⠂⠀⠎⠕⠗⠛⠞⠀⠙⠁⠎⠀⠺⠑⠛⠇⠁⠎⠎⠑⠝⠀⠋⠳⠗ ⠅⠳⠗⠵⠑⠗⠑⠠⠤⠀⠥⠝⠙⠀⠙⠁⠓⠑⠗⠀⠛⠗⠪⠮⠞⠑⠝⠞⠩⠇⠎ ⠳⠃⠑⠗⠎⠊⠹⠞⠇⠊⠹⠑⠗⠑⠠⠤⠀⠡⠎⠙⠗⠳⠉⠅⠑⠄⠀⠊⠝⠀⠵⠺⠩⠤ ⠋⠑⠇⠎⠋⠜⠇⠇⠑⠝⠀⠊⠾⠀⠑⠎⠀⠚⠑⠙⠕⠹⠀⠊⠍⠍⠑⠗⠀⠃⠑⠎⠎⠑⠗⠂ ⠙⠁⠎⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝⠀⠵⠥⠀⠎⠑⠞⠵⠑⠝⠄ ⠀⠀⠥⠍⠀⠡⠋⠀⠙⠬⠀⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠀⠩⠝⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠤ ⠊⠧⠎⠀⠧⠑⠗⠵⠊⠹⠞⠑⠝⠀⠵⠥⠀⠅⠪⠝⠝⠑⠝⠂⠀⠍⠳⠎⠎⠑⠝ ⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠙⠥⠗⠹⠀⠙⠑⠝⠀⠵⠥⠎⠁⠍⠍⠑⠝⠓⠁⠇⠞⠑⠤ ⠏⠥⠝⠅⠞⠀⠀⠿⠈⠀⠀⠑⠗⠎⠑⠞⠵⠞⠀⠺⠑⠗⠙⠑⠝⠄⠀⠙⠬⠎⠑⠀⠞⠑⠹⠤ ⠝⠊⠅⠀⠊⠾⠀⠧⠕⠗⠀⠁⠇⠇⠑⠍⠀⠃⠩⠀⠅⠥⠗⠵⠑⠝⠀⠡⠎⠙⠗⠳⠉⠅⠑⠝ ⠍⠊⠞⠀⠕⠏⠑⠗⠁⠞⠊⠕⠝⠎⠵⠩⠹⠑⠝⠀⠝⠳⠞⠵⠇⠊⠹⠂⠀⠑⠞⠺⠁⠀⠃⠩ ⠩⠝⠑⠍⠀⠏⠇⠥⠎⠵⠩⠹⠑⠝⠀⠊⠝⠀⠩⠝⠑⠍⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠭⠌⠆⠀⠖⠭⠌⠝ \[x^{2} +x^{n}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠃ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠁⠌⠆⠃⠌⠒⠉⠌⠲ \[a^{2}b^{3}c^{4}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠁⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠁⠌⠭⠱⠃⠌⠽⠱⠉⠌⠵ \[a^{x}b^{y}c^{z}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠁⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠁⠌⠤⠼⠉⠀⠄⠁⠌⠈⠖⠼⠑⠀⠶⠁⠌⠤⠼⠉⠈⠖⠼⠑⠀⠶⠁⠌⠼⠃ ⠕⠙⠑⠗ ⠀⠀⠀⠁⠌⠤⠒⠀⠄⠁⠌⠈⠖⠼⠑⠀⠶⠁⠌⠤⠼⠉⠈⠖⠼⠑⠀⠶⠁⠌⠆ \[a^{-3} \cdot a^{+5} =a^{-3 +5} =a^{2}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠁⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠆⠭⠌⠝⠀⠳⠀⠝⠫⠰ \[\frac{x^{n}}{n!}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠁⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠆⠭⠌⠼⠃⠝⠈⠖⠼⠁⠀⠳⠀⠣⠼⠃⠝⠀⠖⠼⠁⠜⠫⠰ \[\frac{x^{2n +1}}{(2n +1)!}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠉ ⠼⠁⠚⠄⠃⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠑⠝⠞⠓⠜⠇⠞⠀⠩⠝⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠀⠺⠩⠞⠑⠗⠑⠀⠏⠗⠕⠤ ⠚⠑⠅⠞⠊⠧⠑⠂⠀⠇⠑⠑⠗⠵⠩⠹⠑⠝⠀⠕⠙⠑⠗⠀⠃⠗⠥⠹⠾⠗⠊⠹⠑⠂ ⠍⠥⠎⠎⠀⠑⠎⠀⠦⠧⠑⠗⠾⠜⠗⠅⠞⠴⠀⠺⠑⠗⠙⠑⠝⠄⠀⠙⠬⠎⠀⠑⠗⠤ ⠋⠕⠇⠛⠞⠀⠙⠥⠗⠹⠀⠙⠁⠎⠀⠎⠑⠞⠵⠑⠝⠀⠙⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠤ ⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝⠎⠀⠀⠿⠨⠀⠀⠧⠕⠗⠀⠙⠁⠎⠀⠵⠩⠹⠑⠝ ⠋⠳⠗⠀⠙⠁⠎⠀⠃⠑⠞⠗⠑⠋⠋⠑⠝⠙⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠄⠀⠙⠑⠗ ⠛⠑⠇⠞⠥⠝⠛⠎⠃⠑⠗⠩⠹⠀⠙⠑⠎⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠎⠀⠺⠊⠗⠙ ⠵⠺⠊⠝⠛⠑⠝⠙⠀⠙⠥⠗⠹⠀⠩⠝⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠎⠀⠱⠇⠥⠎⠎⠵⠩⠤ ⠹⠑⠝⠀⠀⠿⠨⠱⠀⠀⠃⠑⠑⠝⠙⠑⠞⠄ ⠀⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠅⠪⠝⠝⠑⠝⠀⠡⠹ ⠧⠑⠗⠱⠁⠹⠞⠑⠇⠞⠀⠡⠋⠞⠗⠑⠞⠑⠝⠄⠀⠙⠁⠎⠀⠌⠮⠑⠗⠑⠀⠏⠗⠕⠤ ⠚⠑⠅⠞⠊⠧⠀⠺⠊⠗⠙⠀⠍⠊⠞⠀⠀⠿⠨⠀⠀⠁⠇⠎⠀⠧⠑⠗⠾⠜⠗⠤ ⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝⠂⠀⠙⠁⠎⠀⠑⠗⠾⠑⠀⠊⠝⠝⠑⠗⠑⠀⠏⠗⠕⠚⠑⠅⠤ ⠞⠊⠧⠀⠍⠊⠞⠀⠙⠑⠍⠀⠁⠇⠞⠑⠗⠝⠁⠞⠊⠧⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠎⠵⠩⠤ ⠹⠑⠝⠀⠀⠿⠐⠀⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠄⠀⠃⠩⠀⠚⠑⠙⠑⠗⠀⠺⠩⠞⠑⠗⠑⠝ ⠧⠑⠗⠱⠁⠹⠞⠑⠇⠥⠝⠛⠎⠑⠃⠑⠝⠑⠀⠺⠑⠹⠎⠑⠇⠝⠀⠎⠊⠹⠀⠙⠬ ⠃⠩⠙⠑⠝⠀⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠁⠃⠄⠀⠙⠁⠎⠀⠚⠑⠺⠩⠤ ⠇⠊⠛⠀⠵⠥⠛⠑⠓⠪⠗⠊⠛⠑⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝⠀⠓⠑⠃⠞⠀⠙⠬ ⠺⠊⠗⠅⠥⠝⠛⠀⠙⠑⠎⠀⠧⠑⠗⠾⠜⠗⠅⠞⠑⠝⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠵⠩⠤ ⠹⠑⠝⠎⠀⠡⠋⠄⠀⠺⠑⠝⠝⠀⠁⠇⠇⠑⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠑⠀⠁⠝ ⠙⠑⠗⠎⠑⠇⠃⠑⠝⠀⠾⠑⠇⠇⠑⠀⠁⠃⠛⠑⠱⠇⠕⠎⠎⠑⠝⠀⠺⠑⠗⠙⠑⠝ ⠎⠕⠇⠇⠑⠝⠂⠀⠅⠁⠝⠝⠀⠙⠁⠎⠀⠎⠁⠍⠍⠑⠇⠱⠇⠥⠎⠎⠵⠩⠤ ⠹⠑⠝⠀⠀⠿⠿⠱⠀⠀⠙⠬⠀⠋⠕⠇⠛⠑⠀⠧⠕⠝⠀⠱⠇⠥⠎⠎⠵⠩⠹⠑⠝ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠙ ⠑⠗⠎⠑⠞⠵⠑⠝⠀⠶⠙⠁⠎⠀⠵⠺⠩⠞⠑⠀⠧⠕⠇⠇⠵⠩⠹⠑⠝⠀⠊⠾⠀⠞⠩⠇ ⠙⠑⠎⠀⠵⠩⠹⠑⠝⠎⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠃⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠨⠩⠭⠌⠆⠨⠱⠀⠶⠭ \[\sqrt{x^{2}} =x\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠃⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠝⠨⠌⠆⠌⠒⠨⠱⠀⠶⠝⠌⠦ \[n^{2^{3}} =n^{8}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠃⠀⠘⠃⠼⠚⠉ ⠀⠀⠶⠁⠝⠍⠄⠒⠀⠙⠬⠀⠑⠗⠾⠑⠀⠺⠥⠗⠵⠑⠇⠀⠱⠇⠬⠮⠞⠀⠙⠑⠝ ⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠝⠀⠍⠊⠞⠀⠩⠝⠂⠀⠙⠬⠀⠵⠺⠩⠞⠑⠀⠙⠁⠤ ⠛⠑⠛⠑⠝⠀⠝⠊⠹⠞⠄⠶ ⠀⠀⠀⠭⠨⠌⠝⠳⠼⠃⠨⠱⠀⠶⠨⠩⠭⠌⠝⠨⠱⠀⠶⠩⠭⠌⠝ \[x^{frac{n}{2}} =\sqrt{x^{n}} =\sqrt{x}^{n}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠃⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠌⠲⠨⠩⠃⠄⠌⠒⠐⠩⠃⠌⠆⠄⠩⠃⠿⠱ \[\sqrt[4]{b \cdot \sqrt[3]{b^{2} \cdot \sqrt{b}}}\] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠑ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠃⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠨⠵⠑⠗⠋⠁⠇⠇⠎⠛⠑⠎⠑⠞⠵⠠⠒⠀⠘⠝⠀⠶⠘⠝⠡⠴⠠ ⠀⠀⠀⠀⠀⠄⠣⠼⠁⠆⠜⠨⠌⠈⠆⠼⠁⠀⠳⠀⠘⠞⠡⠼⠁⠆⠰⠨⠱ \[\text{Zerfallsgesetz:} N =N_{0} \cdot \left( \frac{1}{2} \right)^{\frac{1}{T_{1/2}}}\] ⠼⠁⠚⠄⠉⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠊⠾⠀⠊⠝⠀⠙⠑⠗⠀⠱⠺⠁⠗⠵⠱⠗⠊⠋⠞⠀⠙⠬⠀⠓⠕⠹⠤⠀⠕⠙⠑⠗ ⠞⠬⠋⠾⠑⠇⠇⠥⠝⠛⠀⠩⠝⠑⠎⠀⠕⠙⠑⠗⠀⠍⠑⠓⠗⠑⠗⠑⠗⠀⠎⠽⠍⠃⠕⠤ ⠇⠑⠀⠧⠕⠝⠀⠍⠁⠞⠓⠑⠍⠁⠞⠊⠱⠑⠗⠀⠃⠑⠙⠣⠞⠥⠝⠛⠂⠀⠺⠊⠗⠙ ⠙⠬⠎⠑⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠍⠁⠞⠓⠑⠍⠁⠞⠊⠅⠱⠗⠊⠋⠞ ⠁⠇⠎⠀⠦⠕⠃⠑⠗⠑⠗⠴⠀⠃⠵⠺⠄⠀⠦⠥⠝⠞⠑⠗⠑⠗⠀⠊⠝⠙⠑⠭⠴ ⠛⠑⠅⠑⠝⠝⠵⠩⠹⠝⠑⠞⠄⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝⠀⠎⠊⠝⠙⠀⠞⠽⠏⠕⠤ ⠛⠗⠁⠋⠊⠱⠀⠝⠊⠹⠞⠀⠧⠕⠝⠀⠁⠝⠙⠑⠗⠑⠝⠀⠕⠃⠑⠗⠑⠝⠀⠊⠝⠙⠊⠤ ⠵⠑⠎⠀⠵⠥⠀⠥⠝⠞⠑⠗⠱⠩⠙⠑⠝⠀⠥⠝⠙⠀⠺⠑⠗⠙⠑⠝⠀⠙⠁⠓⠑⠗ ⠶⠊⠍⠀⠥⠝⠞⠑⠗⠱⠬⠙⠀⠵⠥⠗⠀⠋⠗⠳⠓⠑⠗⠑⠝⠀⠏⠗⠁⠭⠊⠎⠶⠀⠡⠹ ⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠍⠊⠞⠀⠂⠙⠑⠍⠎⠑⠇⠃⠑⠝ ⠃⠗⠁⠊⠇⠇⠑⠵⠩⠹⠑⠝⠀⠩⠝⠛⠑⠇⠩⠞⠑⠞⠄ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠃⠤⠼⠁⠚⠄⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠋ ⠼⠁⠚⠄⠉⠄⠁⠀⠓⠊⠝⠞⠑⠗⠑⠀⠊⠝⠙⠊⠵⠑⠎⠀⠥⠝⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠑⠭⠏⠕⠝⠑⠝⠞⠑⠝ ⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒ ⠀⠀⠊⠝⠙⠊⠵⠑⠎⠀⠗⠑⠹⠞⠎⠀⠧⠕⠍⠀⠓⠡⠏⠞⠎⠽⠍⠃⠕⠇⠀⠺⠑⠗⠤ ⠙⠑⠝⠀⠡⠹⠀⠊⠝⠀⠙⠑⠗⠀⠃⠗⠁⠊⠇⠇⠑⠱⠗⠊⠋⠞⠀⠥⠝⠍⠊⠞⠞⠑⠇⠤ ⠃⠁⠗⠀⠗⠑⠹⠞⠎⠀⠧⠕⠝⠀⠙⠬⠎⠑⠍⠀⠎⠽⠍⠃⠕⠇⠀⠛⠑⠱⠗⠬⠃⠑⠝⠄ ⠎⠬⠀⠺⠑⠗⠙⠑⠝⠀⠍⠊⠞⠀⠙⠑⠍⠀⠵⠩⠹⠑⠝⠀⠋⠳⠗⠀⠩⠝⠑⠝ ⠕⠃⠑⠗⠑⠝⠀⠀⠿⠌⠀⠀⠃⠵⠺⠄⠀⠥⠝⠞⠑⠗⠑⠝⠀⠀⠿⠡⠀⠀⠊⠝⠙⠑⠭ ⠩⠝⠛⠑⠇⠩⠞⠑⠞⠄⠀⠋⠁⠇⠇⠎⠀⠑⠗⠋⠕⠗⠙⠑⠗⠇⠊⠹⠂⠀⠺⠊⠗⠙ ⠙⠬⠎⠑⠎⠀⠵⠩⠹⠑⠝⠀⠍⠊⠞⠀⠩⠝⠑⠍⠀⠏⠗⠕⠚⠑⠅⠞⠊⠧⠤ ⠧⠑⠗⠾⠜⠗⠅⠥⠝⠛⠎⠵⠩⠹⠑⠝⠀⠅⠕⠍⠃⠊⠝⠬⠗⠞⠄ ⠀⠀⠊⠾⠀⠩⠝⠀⠎⠽⠍⠃⠕⠇⠀⠍⠊⠞⠀⠍⠑⠓⠗⠑⠗⠑⠝⠀⠓⠊⠝⠞⠑⠗⠑⠝ ⠵⠥⠎⠜⠞⠵⠑⠝⠀⠧⠑⠗⠎⠑⠓⠑⠝⠂⠀⠎⠕⠀⠺⠑⠗⠙⠑⠝⠀⠙⠬⠎⠑ ⠝⠁⠹⠩⠝⠁⠝⠙⠑⠗⠀⠳⠃⠑⠗⠞⠗⠁⠛⠑⠝⠄⠀⠚⠑⠙⠑⠗⠀⠵⠥⠎⠁⠞⠵ ⠊⠾⠀⠩⠝⠵⠑⠇⠝⠀⠩⠝⠵⠥⠇⠩⠞⠑⠝⠄⠀⠩⠝⠀⠁⠇⠇⠑⠝⠋⠁⠇⠇⠎ ⠧⠕⠗⠓⠁⠝⠙⠑⠝⠑⠗⠀⠑⠭⠏⠕⠝⠑⠝⠞⠀⠗⠳⠉⠅⠞⠀⠁⠝⠀⠙⠬ ⠇⠑⠞⠵⠞⠑⠀⠾⠑⠇⠇⠑⠄ ⠀⠀⠩⠝⠋⠁⠹⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠀⠎⠊⠝⠙⠀⠋⠑⠾⠑⠗ ⠃⠑⠾⠁⠝⠙⠞⠩⠇⠀⠙⠑⠎⠀⠓⠡⠏⠞⠎⠽⠍⠃⠕⠇⠎⠀⠥⠝⠙⠀⠾⠑⠓⠑⠝ ⠊⠝⠀⠙⠑⠗⠀⠗⠑⠛⠑⠇⠀⠧⠕⠗⠀⠊⠝⠙⠊⠵⠑⠎⠀⠶⠎⠬⠓⠑⠀⠦⠼⠓⠄⠁ ⠩⠝⠋⠁⠹⠑⠀⠍⠁⠗⠅⠬⠗⠥⠝⠛⠑⠝⠴⠶⠄ ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠁ ⠀⠀⠀⠆⠭⠌⠝⠀⠳⠀⠝⠫⠰ ⠕⠙⠑⠗ ⠀⠀⠀⠆⠭⠌⠝⠳⠝⠫⠰ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠛ ⠕⠙⠑⠗ ⠀⠀⠀⠭⠌⠝⠳⠝⠫ \[\frac{x^{n}}{n!}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠃ ⠀⠀⠀⠋⠡⠝⠱⠣⠭⠜⠠⠂⠀⠋⠡⠝⠈⠖⠼⠁⠱⠣⠭⠜ \[f_{n}(x), f_{n +1}(x)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠉ ⠀⠀⠀⠣⠘⠏⠡⠼⠃⠝⠈⠤⠼⠁⠜⠌⠗ \[\left(P_{2n -1}\right)^{r}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠙ ⠀⠀⠀⠑⠌⠈⠖⠣⠰⠁⠠⠞⠈⠖⠰⠃⠜ \[e^{+\left( \alpha t +\beta\right)}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠑ ⠀⠀⠀⠨⠵⠑⠊⠞⠡⠨⠃⠕⠃⠀⠶⠨⠵⠑⠊⠞⠡⠨⠁⠇⠊⠉⠑⠠ ⠀⠀⠀⠀⠀⠶⠆⠨⠑⠝⠞⠋⠑⠗⠝⠥⠝⠛⠀⠳⠠ ⠀⠀⠀⠀⠀⠨⠛⠑⠎⠉⠓⠺⠊⠝⠙⠊⠛⠅⠑⠊⠞⠰ \[\text{Zeit}_{\text{Bob}} =\text{Zeit}_{\text{Alice}} =\frac{\text{Entfernung}} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠓ {\text{Geschwindigkeit}}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠋ ⠀⠀⠀⠁⠡⠝⠌⠅⠀⠶⠣⠁⠡⠝⠜⠌⠅ \[a_{n}^{k} =(a_{n})^{k}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠛ ⠀⠀⠀⠣⠭⠡⠝⠌⠊⠜⠌⠗ \[({x_{n}}^{i})^{r}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠓ ⠀⠀⠀⠘⠋⠨⠡⠝⠡⠅⠨⠱⠣⠭⠜ \[F_{n_{k}}(x)\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠚⠊ ⠀⠀⠀⠣⠭⠨⠡⠝⠌⠊⠨⠱⠜⠌⠗ \[(x_{n^{i}})^{r}\] ⠃⠩⠎⠏⠬⠇⠀⠼⠁⠚⠄⠉⠄⠁⠀⠘⠃⠼⠁⠚ ⠀⠀⠀⠯⠎⠨⠡⠼⠚⠈⠪⠶⠊⠈⠪⠶⠍⠀⠰⠳⠀⠼⠚⠈⠪⠄⠚⠈⠪⠄⠝⠨⠱⠠ ⠀⠀⠀⠀⠀⠘⠏⠣⠊⠠⠂⠀⠚⠜ ⠕⠙⠑⠗ ⠀⠀⠀⠯⠎⠡⠼⠚⠈⠪⠶⠊⠈⠪⠶⠍⠱⠡⠼⠚⠈⠪⠄⠚⠈⠪⠄⠝⠠ ⠀⠀⠀⠀⠀⠘⠏⠣⠊⠠⠂⠀⠚⠜ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠚⠄⠉⠄⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⠁⠋⠊ \[\sum_{\substack{0 \leq i \leq m \\ 0